

ADVANCED HIGH SCHOOL MATHEMATICS

VOLUMES

VOLUMES BASED UPON CROSS SECTIONS

Ian Cooper email: matlabvisualphysics@gmail.com

We can calculate the volume of a solid by dividing it into N small volume elements and use a procedure similar to finding the area under a curve. The $k^{\text {th }}$ element has a volume $A\left(x_{k}\right) \Delta x$ where Δx is the width of the element and $A\left(x_{k}\right)$ is the cross-sectional area of the solid at position x_{k}. Assume that the solid (not necessarily a solid of revolution) lies entirely between the plane perpendicular to the X -axis at $x=a$ and the plane perpendicular to the X -axis at $x=b$. The areas $A\left(x_{k}\right)$ all lie in a plane perpendicular to the X -axis. The approximate volume V of the solid is

$$
V \approx \sum_{k=1}^{N} A\left(x_{k}\right) \Delta x
$$

As $\Delta x \rightarrow 0$ we get a better approximation and we can replace the summation by the definite integral

$$
V=\int_{a}^{b} A(x) d x
$$

Example

Assume a solid of length L is such that a cross-section perpendicular to the axis of the solid at a distance x from the end at O is a circle of radius $\sqrt{k x}$.

How to approach the problem:
Draw the XYZ axes.
Sketch the solid aligned along the X -axis. Give the equation for the shape of the solid. Express the cross-sectional area A as a function of x. Evaluation the definite integral to find the volume.

Find the volume of the solid.

Solution

The radius of the solid is given by $R(x)=y=k \sqrt{x}$
The cross-sectional area is $\quad A(x)=\pi R^{2}=k^{2} x$
The limits of the integration are $a=0 \quad b=L$
The volume of the solid is given by the definite integral

$$
\begin{aligned}
& V=\int_{a}^{b} A(x) d x=\int_{0}^{L} \pi k^{2} x d x \\
& V=\frac{1}{2} \pi k^{2} L^{2}
\end{aligned}
$$

Example Pyramid with square base

Find the volume of a pyramid of height H with a square base with sides of length a.

Solution

How to approach the problem:
Draw the XYZ axes.
Sketch the solid aligned along the X -axis.
Express the cross-sectiona area A as a function of x. Evaluation the definite integral to find the volume.

The volume of the solid is given by the definite integral

$$
V=\int_{a}^{b} A(x) d x
$$

The cross-sections are squares and the area $A(x)$ is

$$
A(x)=\left(\frac{a^{2}}{H^{2}}\right) x^{2}
$$

The limits of the integration are $a=0 \quad b=H$

$$
\begin{aligned}
& V=\int_{a}^{b} A(x) d x=\int_{0}^{H}\left(\frac{a^{2}}{H^{2}}\right) x^{2} d x \\
& V=\frac{1}{3} a^{2} H
\end{aligned}
$$

QED

$$
\begin{aligned}
& \frac{y}{x}=\frac{a}{2 H} \quad y=\left(\frac{a}{2 H}\right) x \\
& A(x)=(2 y)^{2}=\left(\frac{a^{2}}{H^{2}}\right) x^{2}
\end{aligned}
$$

