ADVANCED HIGH SCHOOL MATHEMATICS

VOLUMES: AREA UNDER CURVES

Consider a continuous $f(x)$ in the closed interval $[a, b]$. The area A under the curve is the region \mathbb{R} bounded by the function $f(x)$ and the X axis $(y=0)$ and between the vertical lines $x=a$ and $x=b$.

We can set up a procedure for finding the value of the area under the curve A. Select a set of N equally spaced points along the X axis in the
 interval $[a, b]$ where

$$
a=x_{1}, x_{2}, \cdots, x_{N-1}, x_{N}=b \quad \Delta x=x_{k+1}-x_{k} \quad k=1,2,3, \cdots, N-1
$$

The interval $[a, b]$ is divided into $N-1$ subintervals. The area under the curve can be approximated by summing the area of $N-1$ rectangular strips of width Δx and height $f\left(x_{k}\right)$ with the area of the $k^{\text {th }}$ rectangular strip equal to $A_{k}=f\left(x_{k}\right) \Delta x$. Hence the area A is the summation of the

$A \approx \sum_{k=1}^{N-1} A_{k}=\sum_{k=1}^{N-1} f\left(x_{k}\right) \Delta x=\sum_{k=1}^{N-1} y_{k} \Delta x$ area of the $N-1$ strips

$$
A \approx \sum_{k=1}^{N-1} A_{k}=\sum_{k=1}^{N-1} f\left(x_{k}\right) \Delta x=\sum_{k=1}^{N-1} y_{k} \Delta x
$$

The approximation becomes better as $\Delta x \rightarrow 0$ and $N \rightarrow \infty$. The summation in the limit as $\Delta x \rightarrow 0$ is called the definite integral of $f(x)$ from a to b.

$$
A=\int_{a}^{b} f(x) d x=\int_{a}^{b} y d x \quad \text { definite integral }
$$

Example Find the area of a circle by the evaluation of a definite integral

Solution

The equation of a circle with radius a is $\quad x^{2}+y^{2}=a^{2}$
Sketch the upper hemisphere of the circle which is given by the function

$$
f(x)=y=\left(a^{2}-x^{2}\right)^{1 / 2}
$$

The area of the hemisphere A_{R} is

$$
\begin{aligned}
& A_{R}=\int_{-a}^{a} y d x=\int_{-a}^{a}\left(a^{2}-x^{2}\right)^{1 / 2} d x \\
& x=a \sin (\theta) \quad d x=a \cos (\theta) d \theta \quad\left(a^{2}-x^{2}\right)^{1 / 2}=a\left(1-\sin ^{2}(\theta)\right)=a \cos (\theta) \\
& x=a \rightarrow \theta=\pi / 2 \quad x=-a \rightarrow \theta=-\pi / 2 \\
& A_{R}=\int_{-\pi / 2}^{\pi / 2} a^{2} \cos ^{2}(\theta) d \theta \quad \cos ^{2}(\theta)=\left(\frac{1}{2}\right)(\cos (2 \theta)+1) \\
& A_{R}=\frac{a^{2}}{2} \int_{-\pi / 2}^{\pi / 2}(\cos (2 \theta)+1) d \theta \\
& A_{R}=\frac{a^{2}}{2} \pi
\end{aligned}
$$

The area of the circle A is $A=2 A_{R}$
$A=\pi a^{2}$ QED

Ian Cooper email: matlabvisualphysics@gmail.com

