ADVANCED HIGH SCHOOL MATHEMATICS
POLYNOMIALS

ROOTS OF POLYNOMIALS

Ian Cooper email: matlabvisualphysics@gmail.com

Consider the polynomial equation of degree n

$$
y=f(x)=P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{i=0}^{n} a_{i} x^{i}=0
$$

then real numbers x which satisfy this equation are called the real roots of the equation.

- For large values of $|x|$ then $y=f(x) \rightarrow a_{n} x^{n}$
- A polynomial where n is odd (odd degree) always has at least one real root
- At least one maximum or minimum value of the polynomial $f(x)$ occurs between any two distinct real roots.

$$
y=f(x)=P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{i=0}^{n} a_{i} x^{i}=0
$$

This equation can be expressed as

$$
P(x)=a_{n}\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n-1}\right)\left(x-\alpha_{n}\right)=\prod_{i=1}^{n} a_{n}\left(x-\alpha_{i}\right)=0
$$

The polynomial of degree n has n roots. Some of the roots maybe real and others may be imagery, also there may be multiple roots (eg $\alpha_{2}=\alpha_{3}=\alpha_{6}$).

If α_{i} tis a real, then the term $\left(x-\alpha_{i}\right)$ is a factor of $P(x)$

Quadratic Equation

The graph of a quadratic function is a parabola. If there are real values of x for which $y=0$, the parabola will intersect the X -axis at

$$
\text { real roots } \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad b^{2}-4 a c \geq 0
$$

Consider the quadratic equation

$$
P(x)=a x^{2}+b x+c=0
$$

Since the degree of the quadratic is $n=2$, there are two roots which we designate as α and β. Hence we can express the polynomial as

$$
P(x)=a(x-\alpha)(x-\beta)=0
$$

We can find the relationships between the coefficients a, b and c and the two roots α and β.

$$
\begin{aligned}
& x^{2}+\left(\frac{b}{a}\right) x+\left(\frac{c}{a}\right)=0 \\
& x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
& \alpha+\beta=-\frac{b}{a} \quad \alpha \beta=\frac{c}{a}
\end{aligned}
$$

Cubic Equation

Consider the cubic equation

$$
P(x)=a x^{3}+b x^{2}+c x+d=0
$$

Since the degree of the cubic is $n=3$, there are three roots which we designate as α, β and γ. Hence we can express the polynomial as

$$
P(x)=a(x-\alpha)(x-\beta)(x-\gamma)=0
$$

We can find the relationships between the coefficients a, b, c and d and the three roots α, β and γ.

$$
\begin{aligned}
& x^{3}+\left(\frac{b}{a}\right) x^{2}+\left(\frac{c}{a}\right) x+\left(\frac{d}{a}\right)=0 \\
& x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\alpha \gamma+\beta \gamma) x-\alpha \beta \gamma=0 \\
& \alpha+\beta+\gamma=-\frac{b}{a} \quad \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \quad \alpha \beta \gamma=-\frac{d}{a}
\end{aligned}
$$

Quartic Equation

Consider the quartic equation

$$
P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

Since the degree of the cubic is $n=4$, there are four roots which we designate as $\alpha, \beta \gamma$ and δ. Hence we can express the polynomial as

$$
P(x)=a(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=0
$$

We can find the relationships between the coefficients a, b, c and d and the three roots α, β and γ.

$$
\begin{aligned}
& x^{4} \quad+\left(\frac{b}{a}\right) x^{3}+\left(\frac{c}{a}\right) x^{2}+\left(\frac{d}{a}\right) x+\left(\frac{e}{a}\right)=0 \\
& x^{4}-(\alpha+\beta+\gamma+\delta) x^{3}+(\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta) x^{2} \\
& \quad-(\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta) x+\alpha \beta \gamma \delta=0 \\
& \alpha+\beta+\gamma+\delta=-\frac{b}{a} \quad \alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{c}{a} \\
& \alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-\frac{d}{a} \quad \alpha \beta \gamma \delta=\frac{e}{a}
\end{aligned}
$$

FACTORING

You have factored a polynomial if you write a polynomial as the product of two or more lower degree polynomials. For example:

$$
2 x^{3}-8 x^{2}-3 x+12=(x-4)\left(2 x^{2}-3\right)
$$

The polynomials $(x-4)$ and $\left(2 x^{2}-3\right)$ are called factors of the polynomial $2 x^{3}-8 x^{2}-3 x+12$. Note that the degrees of the factors 1 and 2, respectively, add up to the degree 3 of the polynomial we started with. Thus factoring breaks up a complicated polynomial into easier, lower degree pieces. We can also factor the polynomial $\left(2 x^{2}-3\right)$

$$
\begin{aligned}
& \left(2 x^{2}-3\right)=2\left(x^{2}-3 / 2\right)=2(x-\sqrt{3 / 2})(x+\sqrt{3 / 2}) \\
& 2 x^{3}-8 x^{2}-3 x+12=2(x-4)(x-\sqrt{3 / 2})(x+\sqrt{3 / 2})
\end{aligned}
$$

We have now factored the polynomial completely into three linear polynomials (degree $n=1$). Linear polynomials are the easiest polynomials.

The roots of the polynomial $2 x^{3}-8 x^{2}-3 x+12$ are $\alpha=4 \quad \beta=-\sqrt{3 / 2} \quad \gamma=+\sqrt{3 / 2}$
The general equation for a polynomial is $P(x)=a x^{3}+b x^{2}+c x+d=0$ hence, in this example

$$
\begin{aligned}
& \begin{array}{l}
a=2 \quad b=-8 \quad c=-3 \quad d=12 \\
\alpha+\beta+\gamma=-\frac{b}{a} \quad \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a} \quad \alpha \beta \gamma=-\frac{d}{a} \\
\alpha+\beta+\gamma=4-\sqrt{3 / 2}+\sqrt{3 / 2}=4 \quad-\frac{b}{a}=-\frac{(-8)}{2}=4 \quad Q E D \\
\alpha \beta+\alpha \gamma+\beta \gamma=(4)(-\sqrt{3 / 2})+(4)(\sqrt{3 / 2})+(\sqrt{3 / 2})(-\sqrt{3 / 2})=-3 / 2 \quad \frac{c}{a}=\frac{-3}{2} \quad Q E D \\
\alpha \beta \gamma=(4)(-\sqrt{3 / 2})(\sqrt{3 / 2})=-6 \quad-\frac{d}{a}=-\frac{12}{2}=-6 \quad Q E D
\end{array}, l
\end{aligned}
$$

Finding a root $x=\alpha$ of a polynomial $P(x)$ is the same as having $(x-\alpha)$ as a linear factor of $P(x)$

$$
P(x)=(x-\alpha) Q(x) \quad \text { where } n \text { is the degree of } P(x) \text { and }(n-1) \text { is the degree of } Q(x)
$$

