ADVANCED HIGH SCHOOL MATHEMATICS

POLYNOMIALS

LONG DIVISION OF POLYNOMIALS

Ian Cooper email: matlabvisualphysics@gmail.com

Let $P(x), D(x), Q(x)$ and $R(x)$ be polynomial functions in x. Then we can divide the $P(x)$ by $D(x)$ such that

$$
P(x)=D(x) Q(x)+R(x)
$$

where $\quad D(x)$ is the divisor $\quad Q(x)$ is the quotient $\quad R(x)$ is the remainder
The degree of $R(x)$ must be less than that of $D(x)$. The functions $Q(x)$ and $R(x)$ are unique when this condition is satisfied.

DIVISION ALGORITHM

If $P(x)$ and $D(x) \neq 0$ are polynomials, and the degree of $D(x)$ is less than or equal to the degree of $P(x)$, then there exist unique polynomials $Q(x)$ and $R(x)$, so that

$$
\frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
$$

and so that the degree of $R(x)$ is less than the degree of $D(x)$. In the special case where $R(x)=0$, we say that $D(x)$ divides evenly into $P(x)$.

Example $P(x)=6 x^{3}-7 x^{2}+4 x-3 \quad A(x)=3 x+1 \quad$ find $\quad Q(x)$ and $R(x)$.
Solution Make a table as shown below to do the long division to find $Q(x)$ and $R(x)$

				x^{3}	x^{2}	x^{1}	x^{0}
(1)	$\mathrm{D}(\mathrm{x})$	$\mathrm{Q}(\mathrm{x})$		$\mathrm{P}(\mathrm{x})$	$6 \mathrm{x}^{3}$	$-7 \mathrm{x}^{2}$	4 x
(2)	$3 \mathrm{x}+1$	$2 \mathrm{x}^{2}$		-3			
(3)			$(1)-(2)$	0	$6 x^{3}$	$2 x^{2}$	0
			$-9 \mathrm{x}^{2}$	4 x	-3		
(4)	$3 x+1$	$-3 x$		0	$-9 \mathrm{x}^{2}$	-3 x	0
(5)			$(3)-(4)$	0	0	$7 x$	-3
(6)	$3 x+1$	$7 / 3$		0	0	$7 x$	$7 / 3$
(7)			$(5)-(6)-->R(x)$	0	0	0	$-16 / 3$

$$
Q(x)=2 x^{2}-3 x+7 / 3 \quad R(x)=-16 / 3
$$

Example $P(x)=6 x^{3}-7 x^{2}+4 x-3 \quad A(x)=3 x+1 \quad$ find $\quad Q(x)$ and $R(x)$.
Solution Make a table as shown below to do the long division to find $Q(x)$ and $R(x) \backslash$

				x^{3}	x^{2}	x^{1}	x^{0}
(1)	$\mathrm{D}(\mathrm{x})$	$\mathrm{Q}(\mathrm{x})$		$\mathrm{P}(\mathrm{x})$	$2 \mathrm{x}^{3}$	$-9 \mathrm{x}^{2}$	0
(2)	$\mathrm{x}^{2}-\mathrm{x}+1$	2 x			15		
(3)			$(1)-(2)$	0	$-2 x^{3}$	$2 x$	0
(4)	$\mathrm{x}^{2}-\mathrm{x}+1$	-7		$-7 \mathrm{x}^{2}$	-2 x	15	
(5)			$(3)-(4)-->R(x)$	0	0	$-9 x$	22

$$
Q(x)=2 x-7 \quad R(x)=-9 x+22
$$

Exercise
Show that $\frac{3 x^{3}-3 x^{2}+4 x-3}{x^{2}+3 x+4}=(3 x-12)+\frac{28 x+45}{x^{2}+3 x+4}$
How to check your answer!
Evaluate RHS $=(3 x-12)\left(x^{2}+3 x+4\right)+28 x+45$ and compare with LHS $=3 x^{3}-3 x^{2}+4 x-3$

$$
\begin{aligned}
& R H S=3 x^{3}+9 x^{2}+12 x-12 x^{2}-36 x-48+28 x+45 \\
& R H S=3 x^{3}-3 x^{2}+4 x-3=L H S \quad Q E D
\end{aligned}
$$

Exercise
Show that $\frac{x^{3}-5 x^{2}+3 x-15}{x^{2}+3}=(x-5)+\frac{0}{x^{2}+3}$
Check answer!
Evaluate RHS $=(x-5)\left(x^{2}+3\right)$ and compare with LHS $=x^{3}-5 x^{2}+3 x-15$

$$
\begin{aligned}
& R H S=(x-5)\left(x^{2}+3\right)=x^{3}+3 x-5 x^{2}-15 \\
& R H S=x^{3}-5 x^{2}+3 x-15=L H S \quad Q E D
\end{aligned}
$$

In this example, the remainder is zero $R(x)=0$ so $\left(x^{2}+3\right)$ divides evenly into $x^{3}-5 x^{2}+3 x-15$

$$
x^{3}-5 x^{2}+3 x-15=(x-5)\left(x^{2}+3\right)
$$

In this case, we have factored the polynomial $x^{3}-5 x^{2}+3 x-15$, i.e., we have written it as a product of two lower degree) polynomials. $(x-5)$ and $\left(x^{2}+3\right)$ are called the factors of the polynomial $P(x)$.

