ADVANCED HIGH SCHOOL MATHEMATICS

POLYNOMIALS

INTRODUCTION TO FUNCTIONS and POLYNOMIALS

Ian Cooper email: matlabvisualphysics@gmail.com

A polynomial is a function of the form

$$
y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{i=0}^{n} a_{i} x^{i}
$$

The degree of the polynomial is n (n integer $n=0,1,2, \ldots$). Such a function is defined for all values of x and x is finite. A polynomial is a single valued, continuous and differentiable function of x.

A linear function $(n=1)$ is a polynomial of degree 1.
A polynomial of degree $2(n=2)$ is called a quadratic function

$$
y=a_{0}+a_{1} x+a_{2} x^{2}
$$

The quadratic function is mostly expressed as

$$
y=a x^{2}+b x+c
$$

The graph of a quadratic function is a parabola. If there are real values of x for which $y=0$, the parabola will intersect the X -axis at

$$
\text { real roots } \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad b^{2}-4 a c \geq 0
$$

Polynomial functions are called single-valued functions because there is only one value of y for each value of x. The function $y^{2}=x$ is a multi-valued function since there are two values of y for each value of $x:+\sqrt{x_{1}}$ and $-\sqrt{x_{1}}$

Functions can depend upon a number of variables. For example, the pressure p of a gas in a container depends upon the volume V of the container and the temperature T of the gas.

$$
p=\frac{n R T}{V} \quad \text { variabels }(p, T, V) \quad \text { constants }(n, R)
$$

This is an example of an explicit function, since the equation can be rearranged to make the variables V or T the subject of the equation

$$
p=\frac{n R T}{V} \quad V=\frac{n R T}{p} \quad T=\frac{p V}{n R} \quad \text { explicit function }
$$

This is not the case for the equation below in regard to the variable V. This is an example of an implicit function

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \quad \text { implicit function }
$$

A useful classification of functions is into even and odd functions.
An even function of x is one that remains unchanged when the sign of x is reversed

$$
f(-x)=f(x) \quad \text { even function }
$$

whereas an odd function changes sign

$$
f(-x)=-f(x) \quad \text { odd function }
$$

Online activity: Graphing Polynomials

