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MOTION AROUND A BANKED CIRCULAR TRACK 

Ian Cooper   email:   matlabvisualphysics@gmail.com 

An example of centripetal forces and accelerations occurs when a car 

rounds a curve. As a passenger in the car, you feel a sensation of being 

thrust outward. But there is no force pulling you outward. What is 

happening is that you tend to move straight ahead, whereas, the car follows 

the bend in the road. The car must have an inward acting force on it to 

change its direction and travel around the curve. On a flat road, this force is 

due to the frictional force between road and tyres. Therefore, a force acts 

upon you due to friction with the seat or door to make you also go around 

the curve in the road.   

 

Fig.  1.   The road exerts an inward force (friction: road and 

tyres) on the car to make it move in a circle and the car exerts 

an inward contact force on the passenger. 

https://ian888cooper.github.io/advschoolmaths/
https://ian888cooper.github.io/advschoolmaths/
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For the car going around a circular curve on a flat road we need to consider 

the forces acting on the car as shown in figure (2). 

 

Fig. 2.   Forces on a car rounding a circular bend on a flat road 

(top view and front view. 

 

Applying Newton’s Second Law to the car:       
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The car goes not leave the road 
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The frictional force acts towards the centre and is the centripetal force 

causing the change in direction of the car. 
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If 
2

f

m v
F

R
 then the car can’t travel in a circle but will tend to follow a 

straighter path. 

 

 Fig. 3.   A car travelling around a circular bend. There is a 

maximum speed at which the car can travel in a circular path. If 

this speed is exceeded it will move in a straighter (wider arc) 

path. 

 

A simple model for the frictional force Ff is to assume that the frictional 

force is proportional to the normal force FN and the constant of 

proportionality  is called the coefficient of friction. 

  
f N

F F  

For our flat road, 
N

F m g and 
f

F m g , hence the maximum speed vmax 

that a car can go around the circular bend is 

  max
v g R  

Note: the maximum speed is independent of the mass m of the car.     
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However, having a banked curve, the maximum speed to travel in a circle 

can be dramatically increased even when the frictional force is zero 

because a component of the normal acts towards the centre and thus 

behaves as the centripetal force responsible for the change in direction. 

Consider a car (mass m) travelling in a circular path (radius R) around a 

banked curve (angle ) with a constant speed v as shown in figure (4) and 

assume that the frictional force acting on the car is zero,  Ff  = 0. 

  

 

 Fig. 4.   Forces acting on a car rounding a banked curve. 

The gravitational force and the normal force acting on the car can be 

resolved into their X and Y components. The centripetal acceleration is 

horizontal (parallel to the X axis). Apply Newton’s Second Law to the X 

and Y components. 

  
2

sin
x N

m v
F F

R
           centripetal force 

  cos 0
cos

y N N

m g
F F m g F


     

Eliminating FN from these two equations gives 
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2

2
tan tan

v
v g R

g R
    

  
2

2
tan

h v d h
h v g R

d g R d
     

This means that the car can travel around the circular curve banked at the 

angle   at speed v without any friction being required - there are zero 

lateral forces (forces parallel to the surface of the banked road) acting on 

the car. This is the optimum speed or ideal speed for the car to safely 

negotiate the curve. 

The banking angle  depends upon v and R but not the mass m. The larger 

the v the larger the banking angle needs to be and the smaller the banking 

angle the larger the radius of curvature of the curve. 

 

Example  

A circular curve of a railway track has a radius of 400 m. The distance 

between the rails is 1.50 m. The outside rail is 0.080 m above the inside rail. 

What is the optimum speed for a train to negotiate the curve so that the 

sideways force between the wheels and rail is minimized? 
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When the banking angle, speed and radius satisfy  2
tan /v g R  , the car 

rounds the curve smoothly, with no tendency to slide outward or inward. If 

the speed of the car exceeds the optimum speed, then friction between the 

road and car will act down the surface of the road and this frictional force 

will have a horizontal component which increases the centripetal force to 

prevent the car sliding outward. If the car’s speed is less than the optimum 

speed, then the frictional force acts up the bank of the road.   

 

Suppose we consider a particular car going around a particular banked turn. 

The centripetal force needed to turn the car ( 2
/m v R ) depends on the speed 

of the car v (since the mass m of the car and the radius R of the turn are 

fixed) - more speed requires more centripetal force, less speed requires less 

centripetal force. The horizontal component of the normal force 

( cos
Nx N

F F  ) is fixed (since the bank angle are fixed). So, it makes sense 

that we found one particular speed at which the centripetal force needed to 

turn the car equals the centripetal force supplied by the road. This is the 

optimum or ideal speed vO at which the car the car will negotiate the turn - 

even if it is covered with perfectly-smooth ice. Any other speed v, will 

require a frictional force between the car's tyres and the road surface to 

keep the car from sliding up or down the embankment. 
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Speed of car greater than optimum speed v > v0    

If the speed of the car v is greater than the optimum speed v0
 
for the turn 

then the horizontal component of the normal force will be less than the 

required centripetal force and the car will "want to" slide up the incline, 

away from the centre of the turn. The frictional force will oppose this 

motion and will act to pull the car down the incline, in the general direction 

of the centre of the turn. Therefore, the horizontal component of the 

frictional force adds to the horizontal component of the normal force to 

give the required centripetal force for the car to turn the curve without 

moving up or down the incline provide that  

  2
/

N x f x
F F m v R   

 

Fig. 5. Free-body diagram for the forces acting on car on banked 

circular track: weight, normal force and frictional force. 

We can apply Newton’s Second Law to the X and Y components of the 

forces: 
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2

sin cos
x N f

m v
F F F

R
     

We can use the approximation for the frictional force to relate it to the 

normal force 

  
f N

F F  

 

We can now eliminate FN and Ff from our equations 
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If we take the case for 0   we get the same result again for the optimum 

speed  2
tanv g R   
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Example 

You want to negotiate a curve with a radius of 50 meters and a bank angle 

of 15
o
. If the coefficient of friction between the tyres and road surface is 

0.50, what is the maximum speed that you can safely use? How does this 

compare with the optimum speed? 

 

R = 65 m     = 18
o
    = 0.62   g = 9.8 m.s

-2
   vmax = ? m.s

-1
   vO = ? m.s

-

1
 

 

optimum speed    2
tan

O
v g R        max speed    2

max

tan

1 tan
v g R

 

 

 
  

 
 

vO = 14.4  m.s
-1

     vmax = 30.7  m.s
-1

  

   

       vmax > vO  as expected 

 

   

 

Speed of car less than optimum speed v < v0    

If the speed of the car v is less than the optimum speed vO for the curve then 

the horizontal component of the normal force will be greater than the 

required centripetal force and the car will "want to" slide down the incline 

toward the centre of the curve. If there is a frictional force present between 

the car's tyres and the road it will oppose this relative motion and pull the 

car up the incline. 
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Fig. 6. Free-body diagram for the forces acting on car on banked 

circular track: weight, normal force and frictional force. 

We can apply Newton’s Second Law to the X and Y components of the 

forces: 
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We can use the approximation for the frictional force to relate it to the 

normal force 

  
f N

F F  
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We can now eliminate FN and Ff from our equations 
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If we take the case for 0   we get the same result again for the optimum 

speed  2
tanv g R   
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Example   

A car travels at speed v1 around a circular curved track of radius R.  

(a) Find the banked angle  (inclination of the track to the horizontal), if 

there is to be no tendency for the car to slip sideways up or down the 

track. 

(b) If the speed v2 of a second car of mass m then show that the sideways 

frictional force exerted by the surface of the track on the wheels of the 

car is 

  
 2 2

2 1

4 2 2

2

f

v v
F m g

v R g





 

Solution 

 

(a) 

If the car goes around the curve without the need for friction, then, the car 

must travel at the optimum speed v0, therefore v1 = v0 

  2 2

1
tan

O
v v g R    
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The banking angle is determined from 

 
2

1tan
v

g R
   

 

(b)   

Apply Newton’s Second Law to the X and Y directions. From these two 

expressions containing terms involving the forces FN and Ff, we can 

eliminate FN to derive an equation for the frictional force Ff. 

Y components  
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X components 
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Equating the two equations for FN 
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Now 
2

1tan
v

g R
   hence we can find expressions for sin and cos  
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                                                                                                                QED 

 

 

  


