

# ADVANCED HIGH SCHOOL MATHEMATICS 

## MECHANICS

## MOTION IN A CIRCLE: COMPLEX NUMBERS

Ian Cooper email: matlabvisualphysics@gmail.com

We can use complex numbers to mathematically investigate the motion of a particle in a circle.

Let the X axis be the real axis and the Y axis be the imaginary axis. The position of the particle is given by the complex number $z$ as a vector

$$
z=x+i y=R(\cos \theta+i \sin \theta)=R e^{i \theta}
$$

where the angular displacement $\theta$ is a function of time $\theta=\theta(t)$. The magnitude of $z$ is

$$
|z|=R
$$

and the angle of the complex vector $z$ makes with the real axis is the argument of $z$

$$
\operatorname{Arg}(z)=\theta
$$



For motion in a circle the radius is constant

$$
\frac{d R}{d t}=\frac{d^{2} R}{d t^{2}}=0 \quad \dot{R}=\ddot{R}=0
$$

The velocity $v$ of the particle is found by differentiating the position of the particle $z$ with respect to time $t$.

$$
\begin{aligned}
& v=\frac{d z}{d t}=\dot{z} \\
& v=\frac{d}{d t}\left(R e^{i \theta}\right)=R\left(i \frac{d \theta}{d t}\right) e^{i \theta}=i(R \omega) e^{i \theta} \\
& v=i \omega z
\end{aligned}
$$

where the angular speed is $\omega=\frac{d \theta}{d t}=\dot{\theta}$.

The magnitude of the velocity is $|v|=R \omega$. Multiplication by $i$ produces a rotation of a complex vector by $\pi / 2 \mathrm{rad}$. Therefore $z$ and $i z$ are at right angles to each other. Hence, the displacement vector $z$ and velocity vector $v$ are always perpendicular to each other.


The acceleration is found by differentiating the velocity with respect to time

$$
\begin{aligned}
& a=\frac{d v}{d t}=\dot{v} \\
& a=\frac{d}{d t}(i \omega z)=\frac{d}{d t}\left(i \omega R e^{i \theta}\right)=i R\left(\frac{d \omega}{d t} e^{i \theta}+\omega i \frac{d \theta}{d t} e^{i \theta}\right) \\
& a=i \frac{d \omega}{d t} R e^{i \theta}-\omega^{2} R e^{i \theta} \\
& a=\left(e^{i \pi / 2}\right)\left(\frac{d \omega}{d t}\right) z-\omega^{2} z=\left(e^{i \pi / 2}\right) \alpha z-\omega^{2} z \quad \alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}=\ddot{\theta}
\end{aligned}
$$

where the angular acceleration is $\alpha=\frac{d \omega}{d t}$.

The first term $\left(e^{i \pi / 2}\right)\left(\frac{d \omega}{d t}\right) z$ corresponds to the change in speed of the particle and the direction is perpendicular to the displacement vector. This term is the tangential acceleration $a_{T}$. The magnitude of the tangential acceleration is

$$
\left|a_{T}\right|=\left|\left(e^{i \pi / 2}\right)\left(\frac{d \omega}{d t}\right) z\right|=R \frac{d \omega}{d t}=\frac{d v}{d t}
$$

The second term $-\omega^{2} z$ corresponds to the change in direction and it is in a direction opposite to the displacement vector. This is the radial acceleration $a_{R}$. The magnitude of the radial acceleration is

$$
\left|a_{R}\right|=\left|-\omega^{2} z\right|=\omega^{2} R=\frac{v^{2}}{R}
$$



$$
\begin{aligned}
& |z|=R \\
& |v|=R \omega \\
& \left|a_{T}\right|=\frac{d v}{d t}=\frac{d}{d t}(R \omega) \\
& \left|a_{R}\right|=R \omega^{2}=\frac{v^{2}}{R}
\end{aligned}
$$

