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ADVANCED HIGH SCHOOL                   

MATHEMATICS 

    MECHANICS 

   HARMONIC MOTION 

 

Ian Cooper      email:   matlabvisualphysics@gmail.com 

 

Vibrations or oscillations are motions that repeated more or less regularly 

in time. The topic is very broad and diverse and covers phenomena such as 

mechanical vibrations (swinging pendulums, motion of a piston in a 

cylinder and vibrations of strings, rods, plates), sound, wave propagation, 

electromagnetic waves, AC currents and voltages. 

Vibrations or oscillations are periodic if the values of physical quantities 

describing the motion are repeated in successive equal time intervals. The 

period T of vibration or oscillations is the minimum time interval in which 

all the physical quantities characterizing the motion are repeated. Thus, the 

period T is the time interval for one full vibration or cycle. The frequency f 

of periodic vibration is the number of vibration made per second. 

 (1) 
1 1

f T
T f

   

      VIEW some great animations on oscillation (UNSW Physclips) 

 

https://ian888cooper.github.io/advschoolmaths/
https://ian888cooper.github.io/advschoolmaths/
http://www.animations.physics.unsw.edu.au/waves-sound/oscillations/
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What do these figures tell you about vibrations?  
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SIMPLE HARMONIC MOTION 

The simplest type of periodic motion is called simple harmonic motion 

( ). SHM

The displacement x of a particle executing SHM along the X axis is given 

by the sinusoidal function 

 (2) 
max

cos( )x x t    

 xmax is the magnitude of the maximum displacement from the 

equilibrium position (x = 0). xmax is a positive number and is called 

the displacement amplitude  

 t   called the phase angle   [radians] 

 t is the time [s] 

  is the angular frequency   [rad.s
-1

]      

  is the initial phase angle (value of the phase angle at t = 0) [rad]. Its 

value determines the initial displacement of the particle t = 0, 

max
cos( )x x      

 (3) 
2

2 f
T


    

Equation (2) can also be written as: 

 A sine function   
max

sin( ')x x t    

 A sine and cosine function   cos( ) sin( )x A t B t    

The values of the constants xmax, , ’, A and B can be determined from 

the initial conditions (x and v at time t = 0). 
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xmax = 1 m    = 0 rad 

T = 20 s   f = 0.05 Hz    = 0.3142 

rad.s
-1 

 

xmax = 1 m    = - /2 rad 

T = 20 s   f = 0.05 Hz    = 0.3142 

rad.s
-1 

 

xmax = 1 m    =  /2 rad 

T = 20 s   f = 0.05 Hz    = 0.3142 

rad.s
-1 

 

xmax = 1 m    =  rad 

T = 20 s   f = 0.05 Hz    = 0.3142 

rad.s
-1 

 

xmax = 0.5 m    =  / 4 rad 

T = 20 s   f = 0.05 Hz    = 0.3142 

rad.s
-1 

xmax = 0.75 m    = -  / 4 rad 

T = 40 s   f = 0.025 Hz    = 0.1571 

rad.s
-1 
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The velocity v is the time derivative of the displacement 

 (4) 

 

 

max

max

max max max

cos( )

sin( )

sin( )

dx d
v x x t

dt dt

v x t

v v t v x

 

  

  

   

  

   

 

The displacement and velocity are  /2 rad out of phase with each other 

  
max max

0 0x v v v x x         

The velocity amplitude is 
max max

v x     (always a positive number) 

The acceleration a is the time derivative of the velocity 

 (5) 

 

 

2

max2

2

max

2

max max max

2

sin( )

cos( )

cos( )

dv d x d
a v x x t

dt dt dt

a x t

a a t a x

a x

  

  

  



        

  

   

 

 

The acceleration amplitude is 2

max max
a x     (always a positive number) 

The displacement and acceleration are  rad out of phase with each other 

 
2 2

max max max max

0 0x a

x x a x x x a x 

  

         
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The acceleration is always in the opposite direction to the displacement 

except at the equilibrium position (x = 0   a = 0) and direction of the 

acceleration is directed towards the equilibrium position.  

 

 

Since 2
a x  the equation of the motion of the particle executing simple 

harmonic motion is 

 (6) 
2

2 2

2
0 0

d x
x x x

dt
      

Another approach to the mathematical analysis of SHM is to start with the 

equation of motion. 

  
2

2

d x dv
a v

dt dx
   
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The equation of motion then becomes 

  2
v dv x dx   

We can integrate this equation  

  

 2

2
2 21

2

2 2 2

'
2

v dv x dx

v x C

v x C







 


 

  

 

 

where C’ and C are constants which are determined from the initial 

conditions (t = 0). 

Take the initial conditions to be 
max

0 0t x x v     

  2 2 2 2

max max
0 x C C x      

Therefore, the equation for the velocity as a function of displacement is 

 (7) 2 2

max
v x x    

 

According to Newton’s Second Law, an acceleration results from a non-

zero resultant force acting on an object 

 (8) 
1

i

i

a F
m

   

For SHM, the force acting on the particle is 

 (9) 2
F m x   

The resultant force F is always in the same direction as the acceleration a. 

The force responsible for SHM is called the restoring force and is always 

directed towards the equilibrium position (x = 0) and is proportional to the 

displacement. 
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Example (Syllabus) 

The deck of a ship was 2.4 m below the level of the wharf at low tide and 

0.6 m above the level at high tide. Low tide was at 8:30 am and high tide 

was at 2.35 pm. Find when the deck was level with the wharf, if the motion 

was simple harmonic. 

Solution 

The most important part of answering this question is constructing a 

good scientific diagram of the physical situation. 

 

 

Take the initial conditions at the 8:30 am low tide 

 t = 0 s   v = 0 m.s
-1

   x = -xmax = -1.5 m 

The displacement as a function of time is 

  
max

cos( )x x t    
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At time t = 0   
max max

cos( )

cos( ) 1

rad

x x x



 

  

 

 

 

Hence 

 
max max

cos( ) cos( )x x t x t       

 

The time interval from low tide to high tide is half-period T/2 

 8:30 am to 2:35 pm    t = 6 hours 5 minutes = (6)(60)(60)+(5)(60) s = 

21900 s 

 period   T = 43800 s 

 angular velocity    
2

T


  =   1.4345x10

-4
  rad.s

-1
 

We want to find the time when the deck is level with the wharf 

 t = ? s    x = 0.9 m    position of wharf above equilibrium position (x = 

0) 

 

max

max

max

max

cos( )

cos( )

acos

acos

x x t

x
t

x

x
t

x

x

x
t









 




 
  

 

 
 
 

 

 t = 1.5426x10
4
  s = 4.2877 h = 4 h 17 m 

The deck will be level with the wharf at time 12:47 pm 
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SIMPLE PENDULUM 

A simple pendulum is a particle of mass m suspended from a fixed point by 

a weightless, inextensible string of length L. It swings in a vertical plane. 

The forces acting on the particle are the gravitational force 
G

F and the string 

tension 
T

F . For small angle deviations from the vertical, the motion of the 

particle is approximately SHM. 

 

Applying Newton’s Second Law to the particle of mass m 

 (8) 
1

i

i

a F
m

   

We assume that the amplitude of the oscillation is small such that the 

resultant force only acts in the X direction 
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 0
G T x y

F F F F F     

The assumption that Fy = 0 is only valid for small angles ( < ~15
o
) and the 

following predictions do not give good agreement with measurements for 

large amplitude oscillations.  

Adding the components in the Y direction gives 

 cos
cos

T T

m g
F m g F


   

Adding the components in the X direction gives 

 

sin sin tan tan
cos

x T

x

m g x
F F m g

L

m g
F x

L

   


      

 
   

 

 

 

Therefore the acceleration ax in the X direction is 

 (10) 
x

g
a x

L

 
  

 
            valid only for small values of x 

But the acceleration ax is opposite in direction to the displacement x and 

proportional to the displacement x , therefore, the motion of the particle is 

SHM. 

 

Equation (5) for the acceleration of a particle executing SHM is 

 (5) 2
a x   

Comparing equations (10) and (5), the angular frequency  must be 

 (6) 
g

L
   
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hence, the period T of vibration and frequency f are 

 (7) 
1

2
2

L g
T f

g L



            valid only for small values of x 

The period T, frequency f and angular velocity  only depend upon the 

length L of the pendulum’s string and the acceleration due to gravity g, 

they do not depend upon the mass m of the particle or the amplitude of 

oscillation. 

 

Be careful not to think that  
d

dt


   as in rotational (circular motion). Here 

 is the angle of the pendulum at any instant. We now use  not as the rate 

at which the angle  changes, but rather as constant related to the period 

2 g

T L


   . 

Example 

Consider a simple pendulum of length 
2

g
L


 . The initial conditions for the 

vibration of the pendulum are t = 0   x = 0   v = .   

 

(a) 

Find the first value of x where v = 0 by solving the equation of motion for 

the vibration of the pendulum. 

 

(b) 

The motion of the pendulum may more accurately be represented by the 

equation of motion  

  
3 5

6 120
x

g x x
a x

L

  
     

  
 

Use this equation to find a more accurate answer for x than in part (a). 
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Solution 

(a)    
2

g
L


  

Initial conditions        t = 0   x = 0   v =  

Final conditions         x = ?   v = 0 

Equation of motion    
2

2x

d x dv g
a v x

dt dx L

 
     

 
 

Rearranging the equation of motion 

 
g

v dv x dx
L

 
  

 
 

Integrating this equation and using the initial condition and final conditions 

gives 

 

0

0

0
2 21 1

2 2 0

2 2

x

x

g
v dv x dx

L

g
v x

L

g
x

L

L
x

g









 

       

 



 

 

 Note: the initial conditions give the lower limits and the final 

values give the upper limits for the integrations 
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(b) 

  

3 5

3 5
0

0

4 6
2 21 1

2 2

4 6 2
2

6 120

6 120

24 720

0
12 360

x

x

dv g x x
a v x

dx L

g x x
v dv x dx

L

g x x
x

L

x x L
x

g







  
       

   

  
      

   

  
       

   

 
    

 

 
 

We need to find the value of x. We can find x by using Newton’s Method 

 Newton’s Method is a method for finding successively better 

approximations to the roots (or zeroes) of a real-valued function f(x).    

x = ?    f(x) = 0 

 We begin with a first guess x1 for a root of the function f(x). Then a 

better estimate of the root is approximated by 

  1
2 1

1

( )
'( ) ( )

'( )

f x d
x x f x f x

f x dx
    

 The process is repeated as 

  
1

( )
'( ) ( )

'( )

n
n n

n

f x d
x x f x f x

f x dx

    

 until a sufficiently accurate value is reached. 
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Let   
4 6 2

2
( )

12 360

x x L
f x x

g

 
     

 
 

We can replace x by a variable z where  1
1

L
x k z k z

g
    

  

4 4 6 6
2 2 2

4 3 6 5
2

( )
12 360

'( ) 2
3 60

k x k x
f z k x k

k x k x
f z k x

   

  

 

Take the first guess the solution given in part (a) 1 1
1

L
x z

g
     

  

   

1

2 1 1

1

4 6 4 6
2 2

4 6 2 4 6
2

4 6

2 2 4 6

2 4

2 2 22 4

( )
1

'( )

30
(1)

12 360 360

120 20
'(1) 2

3 60 60

30 60
1

360 120 20

30
1

60 120 20

f z
z z z

f z

k k k k
f k k

k k k k k
f k

k k
z

k k k

k k L
z x k z k

gk k


  

 
    

 
   

    
     

    

 
   

 

 

hopefully answer is correct but it seems rather complicated – check 

carefully 
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Another look at the PENDULUM 

 

The displacement of the pendulum along the arc is given by 

  x L                                must be in radians 

The restoring force F (force acting so that   0) is the component of the 

gravitational force (weight 
G G

F F m g ) tangent to the arc of the circle 

  sinF m g    

where the minus sign means that the restoring force F is in the direction 

opposite to the angular displacement . F is proportional to sin and not  

itself, hence the motion of the pendulum is not simple harmonic motion. 

However, for small angular displacements ( < 15
o
), the difference between 

the angle (in radians) and sin is less than 1%. 

   < 15
o
        sin   

Therefore, for small angle oscillations of the pendulum 

   F m g    

the motion can be regarded as SHM.  
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Using the fact that the arc length x is given by x L , the restoring force 

and acceleration can be expressed as 

  

m g
F x F m a

L

g
a x

L

 



 

Again, we have the following relationships 

Equation (5) for the acceleration of a particle executing SHM is 

 (5) 2
a x   

Comparing equations (10) and (5), the angular frequency  must be 

 (6) 
g

L
   

hence, the period T of vibration and frequency f are 

 (7) 
1

2
2

L g
T f

g L



             

For non-SHM the acceleration a of the pendulum is 

  sina g    

We can expand the function sin in terms of the variable  

  
3 5 7

sin
3! 5! 7!

  
       

Therefore, we can express the acceleration as 

  
3 5 7

3! 5! 7!
a g

  

 

      
 

 

It is now obvious that for small   

  a g         SHM 


