ADVANCED HIGH SCHOOL MATHEMATICS

PERMUTATIONS COMBINATIONS PROBABILITY

You should review Binomial Theorem before doing this topic.
How do we count the number of ways we can place the 10 numbers 0123456789
\square
Any of the 10 numbers can be placed into the $1^{\text {st }}$ box, 9 numbers into the $2^{\text {nd }}$ box, 8 numbers into the $3^{\text {rd }}$ box, and so on. So the total number of ways we can arrange all 10 numbers into the 10 boxes is

$$
10!=(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)=3628800
$$

The total number of ways of arranging n objects is called the number of permutations ${ }^{n} P_{n}$

$$
{ }^{n} P_{n}=n!=(n)(n-1)(n-2) \ldots(2)(1)
$$

For example, the total number of permutations of the 26 letters of the English
alphabet is ${ }^{26} P_{26}=26!=4.032914611266057 \ldots \times 10^{26}$

How do we count the number of ways we can place any five of the 10 numbers 0123456789
into 5 boxes?

Any of the 10 numbers can be placed into the $1^{\text {st }}$ box, 9 numbers into the $2^{\text {nd }}$ box, 8 numbers into the $3^{\text {rd }}$ box, 7 numbers into the $4^{\text {th }}$ box and 6 numbers into the $5^{\text {th }}$ box. So the total number of ways we can arrange the numbers into the 5
boxes is $\quad(10)(9)(8)(7)(6)=\frac{10!}{5!}=30240$
Hence, the total number of arrangements or permutations of n distinct objects into k boxes is expressed as

$$
{ }^{n} P_{k}=(n)(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

Example How many 6 letter number plates could be made if any of the 26 letters can be duplicated and if there is no repetition of any letter?
$\Rightarrow n=26 \quad k=6$
No. of plates (repetitions allowed) $=(26)(26)(26)(26)(26)(26)=26^{6}=308915776$

No. of plates (no repetitions) $=$

$$
{ }^{26} P_{6}=\frac{n!}{(n-k)!}=\frac{26!}{20!}=(26)(25)(24)(23)(22)(21)=165765600
$$

\Leftarrow

The number of ways of choosing k objects from n objects when the order of the chosen objects matters is given by the number of permutations

$$
{ }^{n} P_{k}=(n)(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

Example Twelve people are involved in a race. How many permutations (arrangements) are there for every possible winning combination of gold, silver and bronze medal winners?
$\Rightarrow n=12 \quad k=3$
No. of permutations (arrangements)

$$
{ }^{12} P_{3}=\frac{n!}{(n-k)!}=\frac{12!}{9!}=(12)(11)(10)=1320
$$

If the order in which the selected objects does not matter, then we can count the number of combinations that can occur.

The number of ways of choosing k objects from n objects when the order of the chosen items does not matter is

$$
{ }^{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{P!}{k!} \quad \text { where }{ }^{n} C_{k} \equiv\binom{n}{k} \text { is a binomial coefficient. }
$$

Example How many distinct arrangements are when 6 letter are selected from the 26 letters of the alphabet. How many combinations are there if the ordering of the letters is not important?
$\Rightarrow n=26 \quad k=6$
No. distinct arrangements =

$$
{ }^{26} P_{6}=\frac{n!}{(n-k)!}=\frac{26!}{20!}=(26)(25)(24)(23)(22)(21)=165765600
$$

No. of combinations $={ }^{26} C_{6}=\frac{n!}{k!(n-k)!}=\frac{26!}{(6!)(20!)}=\frac{(26)(25)(24)(23)(22)(21)}{(6)(5)(4)(3)(2)(1)}=230230$
DGWJKS and GDJWSK are distinct (different) arrangements but the same combination - the six letters can be arranged in 6 ! (k !) ways

$$
6!\left(\frac{26!}{(6!)(20!)}\right)=\frac{26!}{(20!)} \Rightarrow k!{ }^{n} C_{k}={ }^{n} P_{k} \quad \Leftarrow
$$

Relationship between permutations and combinations for selecting k objects from n objects:

$$
{ }^{n} C_{k} \equiv\binom{n}{k}=\frac{1}{k!}{ }^{n} P_{k} \quad{ }^{n} P_{k}=k!{ }^{n} C_{k}
$$

Example I have a single pack of 52 cards. I draw a card, then draw a second card without putting the first card back in the pack. What is the probability that I draw two aces?
\Rightarrow The number of ways of drawing 2 cards from 52 is

$$
{ }^{n} C_{k} \equiv\binom{n}{k}=\frac{n!}{k!(n-k)!} \quad{ }^{52} C_{2}=\frac{52!}{2!(50)!}=\frac{(52)(51)}{(2)}=1326
$$

The number of ways of getting two aces is the number of ways of drawing 2 aces from the 4 aces in the pack is

$$
{ }^{4} C_{2}=\frac{4!}{2!(2)!}=\frac{(4)(3)}{(2)}=6
$$

The probability that I draw two aces is therefore

$$
\operatorname{Prob}(2 \text { aces })=\frac{{ }^{4} C_{2}}{{ }^{52} C_{2}}=\frac{6}{1326}=\frac{1}{221}
$$

Alternatively, $\quad \operatorname{Prob}(2$ aces $)=\left(\frac{4}{52}\right)\left(\frac{3}{51}\right)=\frac{1}{221} \Leftarrow$

Example What is the probability of winning lotto where there are 40 balls and you have to match all six to win?
\Rightarrow Method 1. Prob $=\left(\frac{6}{40}\right)\left(\frac{5}{39}\right)\left(\frac{4}{38}\right)\left(\frac{3}{37}\right)\left(\frac{2}{36}\right)\left(\frac{1}{35}\right)=\frac{1}{3838800}=2.6053 \times 10^{-7}$
Method 2. The number of ways in choosing 6 numbers from 40 where the order is not important is

$$
{ }^{40} C_{6}=\frac{40!}{(6!)(34!)}=3838380
$$

Therefore, the probability of winning lotto with one set of 6 numbers is

$$
\text { Prob }=\frac{1}{{ }^{40} C_{6}}=\frac{1}{3838380}
$$

\Leftarrow

Example What is the probability choosing only one vowel when three letters are selected from the word NUMBERS? Assume each choice is equally likely.
\Rightarrow
Set of letters $\{\mathrm{N} U \mathrm{M} B \mathrm{ERS}\} n=7$
Subset of vowels $\{\mathrm{U} E\} \quad k=2 \quad$ Subset of consonants $\{\mathrm{N} M \mathrm{BR} \mathrm{S}\} \quad m=5$
Method 1. Think about the tree diagram for all the ways of selecting the 3 letters when there is only one vowel (v) and two consonants (c)

$$
\begin{aligned}
& \operatorname{Prob}(\mathrm{v} \mathrm{c} \mathrm{c})=(2 / 7)(5 / 6)(4 / 5) \\
& \operatorname{Prob}(\mathrm{c} \mathrm{v} \mathrm{c})=(5 / 7)(2 / 6)(4 / 5) \\
& \operatorname{Prob}(\mathrm{c} \mathrm{c} \mathrm{v})=(5 / 7)(4 / 6)(2 / 5) \\
& \operatorname{Prob}(1 \text { vowel })=\operatorname{Prob}(\mathrm{v} \mathrm{c} \mathrm{c})+\operatorname{Prob}(\mathrm{c} \mathrm{v} \mathrm{c})+\operatorname{Prob}(\mathrm{c} \mathrm{c} \mathrm{v}) \\
& \operatorname{Prob}(1 \text { vowel \& } 2 \text { consonants })=\frac{(2)(5)(4)+(5)(2)(4)+(5)(4)(2)}{(7)(6)(5)}=\frac{4}{7}
\end{aligned}
$$

Method 2. The number of ways in choosing 3 letters from the 7 letters where the order is not important is ${ }^{7} C_{3}=\frac{7!}{(3!)(4!)}=35$.

The number of ways of choosing two vowels and five consonants is

$$
{ }^{2} C_{1}{ }^{5} C_{2}=(2)(5)(4)(3)(2)(1) /[(2)(3)(2)(1)]=20
$$

Therefore, the probability of choosing only vowel is $\operatorname{Prob}=\frac{20}{35}=\frac{4}{7} \quad \Leftarrow$

Example How many numbers greater than 6000 can be found containing the digits $1,3,6,7,8$ if no digit is repeated?
\Rightarrow

All 5 digit numbers are greater $6000 \quad N_{1}=(5)(4)(3)(2)(1)=5!=120$
4 digit numbers must start with 6 or 7 or $8 \quad N_{2}=(3)(4)(3)(2)(1)=(3) 4!=72$
Numbers $>6000=N_{1}+N_{2}=120+72=192 \Leftarrow$

The number of arrangements or permutations on n items is n ! since the first position can be occupied by any of the n items, the second by any one of the remaining ($n-1$) items and so on.

$$
\text { Permutations of } n \text { items }{ }^{n} P_{n}=n!
$$

The number of ordered subsets containing k items out of n is by similar reasoning
Permutations of k items from n items

$$
{ }^{n} P_{k}=n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!} \quad k=n \quad 0!=1 \quad{ }^{n} P_{n}=n!
$$

The number of combinations of n objects taken k at a time without regard to the order in which they appear is given by the number of permutations divided by k ! since each combination may
be arranged in k ! ways

$$
{ }^{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}={ }^{n} C_{n-k}
$$

For example, how many distinguishable arrangements are there of n items if n_{1} of the items are identical, another n_{2} are identical but different from the n_{1} items, and so on. The total number of permutations is n ! but each distinguishable permutation appears $n_{1}!n_{2}!\ldots$ times, so that the number of distinguishable permutations is

$$
\frac{n!}{n_{1}!n_{2}!\ldots}
$$

Example In now many ways can the letters A A ABBCDEEE be arranged in a straight line?

$$
\Rightarrow
$$

Number of letters: $\quad n=10 \quad n_{1}=3 \quad n_{2}=2 \quad n_{3}=3$
Number of permutations $\quad N=\frac{n!}{n_{1}!n_{2}!\ldots}=\frac{10!}{(3!)(2!)(3!)}=50400$
\Leftarrow

A box contains 8 batteries, 5 of which are good and the other 3 are defective. Two batteries are selected at random and inserted into toy A and then another two batteries are selected and inserted into toy B. The toys only function with two good batteries.
(a) Calculate all the possible permutations of selecting 4 batteries from the 8 batteries.
(b) Calculate all the possible combinations of selecting 4 batteries from the 8 batteries.
(c) Calculate the probability that both toys function.
(d) Calculate the probability that only one of the toys function.
(e) Calculate the probability that both toys do not function.
\Rightarrow

A convenient way to attempt such problems is to use a spreadsheet for the setting out and performing the calculations. To find all the permutations you can use a tree-diagram, however, tree-diagrams are difficult to draw. A better approach is to make a modified tree-diagram showing all the branches as shown in the figure created in the spreadsheet. In the spreadsheet permutations and combinations are written without any superscripts or subscripts

$$
{ }^{n} P_{k} \rightarrow n P k \quad{ }^{n} C_{k} \rightarrow n C k
$$

The total number of permutations of the eight batteries taken 4 at a time in a definite order is given by

$$
{ }^{n} P_{k}=\frac{n!}{(n-k)!} \quad{ }^{8} P_{4}=\frac{8!}{4!}=(8)(7)(6)(5)=1680
$$

since there 8 batteries to select from in the $1^{\text {st }}$ choice; 7 batteries in the $2^{\text {nd }}$ selection; and so on.
Let p represent a successful outcome of selecting a good battery and q represent a nonsuccessful outcome when a defective battery is chosen. On each selection, there are only two outcomes: success or failure and there are 4 selections. Therefore, the number of branches or events in the modified tree-diagram is $2^{4}=16$.

Figure P shows part of the spreadsheet for the calculations of the number of permutations and probability for different events. Consider the line showing branch 5 in the modified tree-diagram. The outcome of the selection of batteries is p q p p (batteries: good / defective/ good / good). $1^{\text {st }}$ selection: 5 good batteries, $2^{\text {nd }}$ selection: 3 defective batteries, $3^{\text {rd }}$ selection: 4 good batteries; $4^{\text {th }}$ selection: 3 good batteries to choose from. Therefore the number of permutations for this event is $(5)(3)(4)(3)=180$. The probability of this event is

$$
P(\text { pqpp })=\frac{\text { number of arrangements for pqpp }}{\text { total number of arrangements }}=\frac{180}{1680}=0.1071=\frac{3}{28}
$$

The arrangement pqpp implies that toys A does not work (one defective battery) and toy B functions OK (two good batteries). Hence, for this event, the probability of only one toy functioning OK is $0.1071=3 / 28$.

	PERMUTATIONS															
	total number of permutations $8 \mathrm{P} 5=(8)(7)(6)(5)=$								1680							
											Both toys OK		One toys only OK		Both toys not OK	
	Modified tree-diagram p (good battery) q (defectibe battery)												pp/pq pp/qp pp/qq		pp/pq pp/qp pp/qq	
	Outcomes				Number of selections				Permutations Perm	$\begin{array}{\|c\|} \hline \text { Probability } \\ \text { Prob } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pp} / \mathrm{pp} \\ & \text { Perm } \\ & \hline \end{aligned}$	Prob	$\mathrm{qq} / \mathrm{pp} \mathrm{qp/pp} \mathrm{pq/pp}$		$\mathrm{qq} / \mathrm{pp} \mathrm{qp/pp} \mathrm{pq/pp}$	
	1st	2nd	3rd	4th	1st	2nd	3rd	4th					Perm	Prob	Perm	Prob
1	p	p	p	p	5	4	3	2	120	0.07143	120	0.0714				
2	p	p	p	q	5	4	3	3	180	0.10714			180	0.1071		
3	p	p	q	p	5	4	3	3	180	0.10714			180	0.1071		
4	p	p	q	q	5	4	3	2	120	0.07143			120	0.0714		
5	p	q	p	p	5	3	4	3	180	0.10714			180	0.1071		
6	p	9	p	q	5	3	4	2	120	0.07143					120	0.0714
7	p	9	q	p	5	3	2	4	120	0.07143					120	0.0714
8	p	9	q	q	5	3	2	1	30	0.01786					30	0.0179
9	q	p	p	p	3	5	4	3	180	0.10714			180	0.1071		
10	9	p	p	q	3	5	4	2	120	0.07143			120	0.0714		
11	9	p	q	p	3	5	2	4	120	0.07143					120	0.0714
12	9	p	q	q	3	5	2	1	30	0.01786					30	0.0179
13	9	q	p	p	3	2	5	4	120	0.07143			120	0.0714		
14	9	q	p	q	3	2	5	1	30	0.01786					30	0.0179
15	9	q	q	p	3	2	1	5	30	0.01786					30	0.0179
16	q	q	q	q	3	2	1	0	0	0.00000					0	0.0000
						sums -->			1680	1.0000	120	0.0714	1080 0.6429		480	0.2857

Fig. P. Part of the spreadsheet for permutations and probability calculations.
The probability that both toys function $P_{\text {two }}=0.0714=2 / 28$ (event \#1 p p p p).
Probability that one toy functions is $P_{\text {one }}=0.6429=18 / 28$ (events \#2 \#3 \#4 \#5 \#9 \#10 \#13)
Probability that both toys do not work is $P_{\text {zero }}=0.2857=8 / 28$ (events \#6 \# 7 \#8 \#11 \#12 \#14 \#15 \#16)

$$
P_{t w o}+P_{\text {one }}+P_{z e r o}=2 / 28+18 / 28+8 / 28=1
$$

The total number of combinations is

$$
{ }^{n} C_{k}=\frac{{ }^{n} P_{k}}{k!}=\frac{n!}{k!(n-k)!} \quad{ }^{8} C_{4}=\frac{8!}{4!4!}=70
$$

The combinations are shown in figure C .

COMBINATIONS								
binomial coefficients								
						$5 C k$	$3 C k$	$5 C k * 3 C k$
\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{p}	$5 C 4$		5	1	5
\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{q}	$5 C 3$	$3 C 1$	10	3	30
\mathbf{p}	\mathbf{p}	\mathbf{q}	\mathbf{q}	$5 C 2$	$3 C 2$	10	3	30
\mathbf{p}	\mathbf{q}	\mathbf{q}	\mathbf{q}	$5 C 1$	$3 C 3$	5	1	5
\mathbf{q}	\mathbf{q}	\mathbf{q}	\mathbf{q}		0	1	0	0
						sum -->	$\mathbf{7 0}$	

Fig. C. Section of the spreadsheet used to calculate the number of combinations for different events.

Binomial distribution

We can model experiments where there are precisely two outcomes which we classify as either success or failure. If the probability of a given event is p (success) and the probability of the event not occurring (failure) is $q=(1-p)$, then the probability of the of the event occurring k times out of n trails is

$$
\operatorname{Prob}(k \text { success from } n \text { trails })=\binom{n}{k} p^{k} q^{n-k}={ }^{n} C_{k} p^{k} q^{n-k} \quad q=1-p
$$

Example

An urn contains 9 black balls and 21 white balls. A ball is selected at random from the urn and replaced 10 times. What is the probability that (A) zero back balls and (B) 5 black balls are selected in the 10 trials.
\Rightarrow
black balls $n_{B}=9$ white balls $n_{w}=21$ balls $N=30$ number of trails $n=10$
For each selection $\quad \operatorname{Prob}($ black $)=p=\frac{n_{B}}{n_{B}+n_{w}}=\frac{9}{30}=\frac{3}{10} \quad \operatorname{Prob}($ white $)=q=1-p=\frac{21}{30}=\frac{7}{10}$
$\operatorname{Prob}(k$ success from n trails $)={ }^{n} C_{k} p^{k} q^{n-k} \quad{ }^{n} C_{k} \equiv\binom{n}{k}=\frac{n!}{k!(n-k)!}$
(A) zero black balls chosen $k=0$
$\operatorname{Prob}(0$ success from 10 trails $)={ }^{10} C_{0}\left(\frac{3}{10}\right)^{0}\left(\frac{7}{10}\right)^{10}=0.0282$
(B) 5 black balls chosen $k=5$
$\operatorname{Prob}(5$ success from 10 trails $)={ }^{10} C_{5}\left(\frac{3}{10}\right)^{5}\left(\frac{7}{10}\right)^{5}=0.1029$

Bar graph of the probability of selecting k black balls
\Leftarrow

If there n trails in the experiment, each with two possible outcomes then there are 2^{n}
permutations of successes and failures. Consider the experiment of tossing a coin n times (or n coins simultaneously). The results of n successive coin flips can be represented by a sequence of n letters H (head) and T (tail).

In each coin toss, let H represent a success and T a failure. We can use the binomial distribution to predict the probability of k successes and $(n-k)$ failures where p is the probability of success and q the probability of failure

$$
\text { Probability of } k \text { successes } \quad \operatorname{Prob}(k \text { success in } n \text { trails })=\binom{n}{k} p^{k} q^{n-k}={ }^{n} C_{k} p^{k} q^{n-k}
$$

For example, if $n=5$ then there are $2^{5}=32$ distinct possible arrangements for the sequences of H and T. Assuming a fair coin, then the probability for each distinct sequence occurring is $1 / 32$. One of the possible sequences is $\{\mathrm{HTHTT}\}$ and the probability of this sequence is $1 / 32$.

A spreadsheet is a useful tool for investigating the sequences and probabilities of coin toss types of experiments. The following is a section of a spreadsheet for the tossing of a fair coin 5 times.

Spreadsheet showing the 32 possible sequences for 5 tosses of a fair coin.

The probability of each sequence is exactly the same $\quad P($ each distinct sequence $)=1 / 32=0.03125$.
The number of sequences that has two heads and three tails is 10 (check spreadsheet by counting all the sequences with two heads and three tails). This number can be calculated from the binomial coefficient for counting the number of ways of selecting 2 objects from 5

$$
{ }^{5} C_{2}=\frac{5!}{2!3!}=10
$$

The probability of the event of two heads and three tails in any order is

$$
P(2 \mathrm{H} 3 \mathrm{~T})=(10)(1 / 32)=0.3125
$$

since the probability of each sequence is $(1 / 32)$ and there are 10 sequences with two heads and three tails.

The probability for two success (two heads) can also be calculated using the binomial distribution

$$
\left.\begin{array}{l}
n=5 \quad k=2 \quad p=q=1 / 2 \\
\operatorname{Prob}(2 \mathrm{H}
\end{array} 3 \mathrm{~T}\right)=\binom{5}{2} p^{2} q^{3}={ }^{5} C_{2} p^{2} q^{3}=(10)\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}=0.3125-1 .
$$

Example

A factory produces bolts and it is known that the percentage of the bolts that are defective is f. In a random sample of 5 bolts, what is the probability than (A) zero bolts are defective, (B) precisely 1 bolt is defective and (c) at most one bolt is defective?

Let the probability of getting a non-defective bolt be p and the selection of a defective bolt be q, therefore

$$
q=f / 100 \quad p=1-q=1-f / 100
$$

The binomial distribution

$$
\operatorname{Prob}(k \text { success in } n \text { trails })=\binom{n}{k} p^{k} q^{n-k}={ }^{n} C_{k} p^{k} q^{n-k}
$$

can be used to calculate the probabilities where $n=5$.
(A) $k=5$ (zero defective bolts)

$$
\operatorname{Prob}(\mathrm{A})=\binom{5}{5} p^{5} q^{0}=(1)(1-f / 100)^{5}=10^{-10}(100-f)^{5}
$$

(B) $k=4$ (two defective bolts)
$\operatorname{Prob}(\mathrm{B})=\binom{5}{4} p^{4} q^{1}=\left(5(1-f / 100)^{5}(f / 100)=5 \times 10^{-10} f(100-f)^{4}\right.$
(C) At most one defective bolt
$\operatorname{Prob}(C)=1-\operatorname{Prob}(\mathrm{A})-\operatorname{Prob}(\mathrm{B})$
$\operatorname{Prob}(C)=1-10^{-10}(100-f)^{5}-5 \times 10^{-10} f(100-f)^{4}$
$\operatorname{Prob}(C)=1-10^{-10}(100-f)^{4}[(100-f)-5]=1-10^{-10}(100-f)^{4}(105-f)$
\Leftarrow

Example

In cricket for a six ball over, the average scoring shot occurs every third ball. Estimate how many six ball overs occur in a thousand overs in which there are precisely two scoring shots.
\qquad
We want to find the probability of 2 scoring shots in a 6 ball over and the probability of scoring a shot is $p=1 / 3$ and not scoring a shot is $q=2 / 3$.

The binomial distribution

$$
\operatorname{Prob}(k \text { success in } n \text { trails })=\binom{n}{k} p^{k} q^{n-k}={ }^{n} C_{k} p^{k} q^{n-k}
$$

can be used to calculate the probability for $n=6 \quad k=2 \quad p=1 / 3 \quad q=2 / 3$.

$$
\operatorname{Prob}=\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4}=0.3292
$$

In 1000 overs, therefore the estimated number of overs with exactly two scoring shots is

$$
\# \text { overs }=(1000)(0.3292)=329 \quad \text { (nearest integer) }
$$

\Leftarrow

