

ADVANCED HIGH SCHOOL MATHEMATICS

INTEGRATION

DEFINITE INTEGRALS

Integration is a very valuable technique for calculations that can be expressed in terms of a summation. An important theorem relates the limit of a summation to the definite integral. Consider the continuous and single-valued function $f(x)$ defined in the interval $x_{a} \leq x \leq x_{b}$. The interval from x_{a} to x_{b} can be divided into N equal subintervals each of length Δx where $\Delta x=\frac{x_{b}-x_{a}}{N}$ and $x_{1}=x_{a} \quad x_{2}=x_{a}+\Delta x \quad x_{3}=x_{a}+2 \Delta x \quad \cdots \quad x_{N+1}=x_{b}$

Then the sum of the rectangles S_{N} corresponds to

$$
S_{N}=\sum_{i=1}^{N} f\left(x_{i}\right) \Delta x
$$

The fundamental theorem of integral calculus states that as the number of subintervals N approaches infinity

$$
\operatorname{limit}_{N \rightarrow \infty} S_{N}=\operatorname{limit}_{N \rightarrow \infty} \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x=\int_{x_{a}}^{x_{b}} f(x) d x \quad \text { definite integral }
$$

The definite integral corresponds to the area A under the curve represented by the function $y=f(x)$ in the interval $x_{a} \leq x \leq x_{b}$.

$$
A=\int_{x_{a}}^{x_{b}} f(x) d x
$$

where x_{a} is the lower limit of the integration and x_{b} is the upper limit. The function $f(x)$ is called the integrand and A is called the integral.

The definite integral can be expressed as: if there is some function $F(x)$ which is differentiable in the interval $x_{a} \leq x \leq x_{b}$ and has the derivative $f(x)$ then the definite integral of $f(x)$ with respect to x over the interval is

$$
F\left(x_{b}\right)-F\left(x_{a}\right)=\int_{x_{a}}^{x_{b}} f(x) d x \quad \text { definite integral }
$$

Example

Evaluate $\int_{1}^{2}\left(x^{2}+2 x+1\right) d x$
indefinite integral

$$
\begin{aligned}
& \int_{1}^{2}\left(3 x^{2}+2 x+1\right) d x \\
& F(x)=\int\left(3 x^{2}+2 x+1\right) d x=x^{3}+x^{2}+x+C \\
& F(2)=8+4+2+C \quad F(1)=1+1+1+C \\
& F(2)-F(1)=(8+4+2+C)-(1+1+1+C) \\
& F(2)-F(1)=11
\end{aligned}
$$

definite integral

$$
\begin{aligned}
& A=\int_{1}^{2}\left(3 x^{2}+2 x+1\right) d x \\
& A=\left[x^{3}+x^{2}+x\right]_{1}^{2} \\
& A=\left(2^{3}-1^{3}\right)+\left(2^{2}-1^{2}\right)+(2-1) \\
& A=7+3+1=11
\end{aligned}
$$

Properties of definite integrals

- Interchanging the limits of integration changes the sign of the integral

$$
\int_{x_{a}}^{x_{b}} f(x) d x=-\int_{x_{b}}^{x_{a}} f(x) d x
$$

- The range of integration can be subdivided

$$
\int_{x_{a}}^{x_{b}} f(x) d x=\int_{x_{a}}^{x_{c}} f(x) d x+\int_{x_{c}}^{x_{b}} f(x) d x \quad x_{a}<x_{c}<x_{b}
$$

- Integration by substitution $x=h(u)$ Need to change the limits of integration

$$
\int_{x_{a}}^{x_{b}} f(x) d x=\int_{u_{b}}^{u_{a}} g(u) d u
$$

- Integration of even and odd functions

$$
\begin{array}{lll}
\text { even function } & f(-x)=f(x) & \int_{-x_{a}}^{x_{a}} f(x) d x=2 \int_{0}^{x_{a}} f(x) d x \\
\text { odd function } & f(-x)=-f(x) & \int_{-x_{a}}^{x_{a}} f(x) d x=0
\end{array}
$$

Example Find the area of the triangle with sides 3,4 and 5.

Equation of hypotenuse $y=(3 / 4) x \quad 0 \leq x \leq 4$

Area of triangle equals area under curve $\quad A=\int_{x_{a}}^{x_{b}} y d x$

$$
\begin{aligned}
& A=\int_{0}^{4}(3 / 4) x d x=(3 / 8)\left[x^{2}\right]_{0}^{4} \\
& A=6 \quad A=\left(\frac{1}{2}\right)(\text { base })(\text { height })=\left(\frac{1}{2}\right)(4)(3)=6
\end{aligned}
$$

