

ADVANCED HIGH SCHOOL

MATHEMATICS

INTEGRATION

INDEFINITE INTEGRALS

Differentiation is concerned with the rates of change of physical quantities. It is a fundamental topic in mathematics, physics, chemistry, engineering etc. Consider a continuous and single value function $y=f(x)$. The rate of change of y with respect to x at the point x_{1} is called the derivative and equals the slope of the tangent to the curve $y=f(x)$ at the point x_{1}. The process of finding the derivative of a function is called differentiation.

The reverse problem is also an extremely important part of mathematics - given a function $f(x)$ which represents the rate of change of some quantity with respect to x, what is the function $F(x)$ such that

$$
f(x)=\frac{d F(x)}{d x}
$$

The process of working back from the derivative of $F(x)$ to the function $F(x)$ is called integration.

$$
F(x)=\int f(x) d x \quad \text { indefinite integral }
$$

Integration is the inverse process of differentiation. Whereas there are definite rules for the differentiation of any function, there are no such rules for integration.

Given that

$$
f(x)=\frac{d F(x)}{d x}
$$

then $F(x)$ called an indefinite integral because the value $F(x)$ depends upon some arbitrary constant C.

$$
F(x)=\int f(x) d x+C \quad C \text { is a constant }
$$

Example

$$
\begin{aligned}
& y=3 x^{2}+2 x+15 \\
& z=3 x^{2}+2 x+99 \\
& d y / d x=6 x+2 \quad d z / d x=6 x+2 \\
& y \neq z \quad d y / d x=d z / d x \\
& F(x)=\int(d y / d x) d x=\int(d z / d x) d x=\int(6 x+2) d x \\
& F(x)=3 x^{2}+2 x+C
\end{aligned}
$$

The value of C can't be determined from $d y / d x$ or $d z / d x$ alone.

The value of an integral is unaffected by multiplication by a constant

$$
\int a f(x) d x=a \int f(x) d x \quad a \text { is a constant }
$$

The integral of a sum can be found by integrating each term separately

$$
\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x
$$

STANDARD INTEGRALS

Some integrals are of a standard form and can be integrated relatively easily and others can be converted to a standard form using a variety of different techniques. Many integrals can't be integrated analytically at all, for example, $\int \exp \left(-x^{2}\right) d x$. However, the integral can be evaluated using numerical techniques such as Simpson's rule.

$$
\begin{aligned}
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1 \quad x \neq 0 \\
& \int \frac{1}{x} d x=\int x^{-1} d x=\log _{e}(x)+C \quad \log _{e}(x) \equiv \ln (x) \quad x>0 \\
& \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+C \quad a \neq 0 \\
& \int \cos (a x) d x=\frac{1}{a} \sin (a x)+C \quad a \neq 0 \\
& \int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+C \quad a \neq 0 \\
& \int \operatorname{cosec}^{2}(a x) d x=-\frac{1}{a} \cot (a x)+C \quad a \neq 0 \\
& \int \sec (a x) \tan (a x) d x=\frac{1}{a} \sec (a x)+C \quad a \neq 0 \\
& \int \operatorname{cosec}(a x) \cot (a x) d x=-\frac{1}{a} \operatorname{cosec}(a x)+C \quad a \neq 0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+C \quad a \neq 0 \\
& \int a^{x} d x=\frac{a^{x}}{\log e(a)}+C \quad a \neq 1 \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+C=-\cos ^{-1}\left(\frac{x}{a}\right)+C \quad-a<x<a \quad a>0 \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log _{e}\left(x+\sqrt{x^{2}-a^{2}}\right)+C \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log _{e}\left(x+\sqrt{x^{2}+a^{2}}\right)+C \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C \quad a \neq 0
\end{aligned}
$$

