

ADVANCED HIGH SCHOOL MATHEMATICS

GRAPH THEORY

SKETCHING FUNCTIONS

It is a very useful skill to be able to draw a sketch of a function $y=f(x)$ showing its essential features without actually having to draw an accurate graph.

We will consider the function

$$
y=\frac{x^{2}-3 x+2}{x^{2}+3 x+2}
$$

to illustrate a procedure that you should follow in curve sketching.

1. Find the value of y when $x=0$

$$
x=0 \quad y=1
$$

2. Find (approximately if necessary) the values of x when $y=0$.

$$
y=0 \Rightarrow x^{2}-3 x+2=0 \Rightarrow x=+1 \quad x=+2
$$

3. Are they any values of x for which y becomes infinite (denominator $=0$)?

$$
x^{2}+3 x+2=0 \Rightarrow x=-1 \quad x=-2 \Rightarrow y= \pm \infty
$$

We must now examine the values of y around the zeros of the numerator

$$
\begin{aligned}
x=-1 \Rightarrow y= \pm \infty & x=-1.10 \Rightarrow y=-73
\end{aligned} \quad x=-1.01 \Rightarrow y=-611
$$

If x is a little smaller than $-1, y$ approaches $-\infty$ but if x is a little larger than $-1, y$ approaches $+\infty$.

$$
\begin{array}{rc}
x=-2 \Rightarrow y= \pm \infty \quad x=-2.10 \Rightarrow y=+116 & x=-2.01 \Rightarrow y=+1195 \\
x=-1.99 \Rightarrow y=-1205 & x=-1.90 \Rightarrow y=-126
\end{array}
$$

If x is a little smaller than $-2, y$ approaches $+\infty$ but if x is a little larger than $-2, y$ approaches $-\infty$.

The lines $x=-1$ and $x=-2$ are called vertical asymptotes.
4. Investigate what happens when $x \rightarrow \pm \infty$

$$
y=\frac{1-3 / x+2 / x^{2}}{1+3 / x+2 / x^{2}} \quad x \rightarrow-\infty \quad \Rightarrow \quad y \rightarrow 1 \quad(\text { from above } y>1)
$$

Thus as $x \rightarrow-\infty$ the value of y decreases to 1 as the curve approaches the line $y=1$. Such a line is called the horizontal aysmptote.

$$
y=\frac{1-3 / x+2 / x^{2}}{1+3 / x+2 / x^{2}} \quad x \rightarrow+\infty \quad \Rightarrow \quad y \rightarrow 1 \quad(\text { from below } y<1)
$$

Thus as $x \rightarrow+\infty$ the value of y increases to 1 as the curve approaches horizontal asymptote $y=1$.
5. Determine the critical points or turning points $d y / d x=0$

$$
\begin{aligned}
& d y / d x=\frac{6\left(x^{2}-2\right)}{\left(x^{2}+3 x+2\right)^{2}} \\
& d y / d x=\frac{6\left(x^{2}-2\right)}{\left(x^{2}+3 x+2\right)^{2}}=0 \Rightarrow x= \pm \sqrt{2}
\end{aligned}
$$

Turning points are approximately at the points $(-\sqrt{2},-34)$ and $(+\sqrt{2},-0.03)$

$$
\begin{aligned}
& d^{2} y / d x^{2}=\frac{12\left(-x^{3}+6 x+6\right)}{\left(x^{2}+3 x+2\right)^{3}} \\
& x=-\sqrt{2} \quad d^{2} y / d x^{2}<0 \Rightarrow \text { maximum } \\
& x=+\sqrt{2} \quad d^{2} y / d x^{2}>0 \Rightarrow \text { minimum } \\
& d^{2} y / d x^{2}=0 \Rightarrow x \approx 2.9 \Rightarrow \text { point of inflection }
\end{aligned}
$$

6. Use your calculator to find y for a range of x values.

$$
\begin{aligned}
& y_{\mathrm{den}}=x^{2}-3 x+2 \\
& y_{\mathrm{den}}=0 \quad x=+1 \quad x=+2
\end{aligned}
$$

$$
\begin{aligned}
& y_{\text {num }}=x^{2}+3 x+2 \\
& y_{\text {num }}=0 \quad x=-1 \quad x=-2
\end{aligned}
$$

vertical
 $$
x=-1
$$
 $$
x=-2
$$

 asymphtoteshorizontal asymptote

$$
x \rightarrow-\infty \quad \Rightarrow \quad y \rightarrow 1 \quad(\text { from above } y>1)
$$

