ADVANCED HIGH SCHOOL MATHEMATICS

GRAPH THEORY

HYPERBOLA, EXPONENTIAL, LOGARITHMIC and POWER FUNCTIONS

RECTANGULAR HYPERBOLA FUNCTION

$$
\begin{aligned}
x y=k \quad y=\frac{k}{x} & \\
+x \rightarrow 0 & \Rightarrow y \rightarrow+\infty \\
-x \rightarrow 0 & \Rightarrow y \rightarrow-\infty \\
x \rightarrow \pm \infty & \Rightarrow y \rightarrow 0
\end{aligned}
$$

The equation for a rectangular hyperbola occurs in many areas of physics.
When the voltage V between two points is held constant and the resistance R between these two points is varied then the current I is in inversely proportional to the resistance R

$$
I=\frac{V}{R} \quad \text { variables: } R \quad I \quad \text { constant: } V
$$

If a fix quantity of gas (number of moles n) at a constant temperature T (temperature measured in kelvin) is enclosed in a volume V then the pressure p exerted by the gas is inversely proportional to the volume V. This is known as Boyle's Law.

$$
\begin{gathered}
\text { Boyle's Law } p V=n R T \quad p=\frac{n R T}{V} \quad \text { variables: } p V \quad \text { constants: } n R T \\
\\
\underline{\text { View animation } 1 \text { on Boyle's Law }} \\
\text { View application } 2 \text { of Boyle's Law }
\end{gathered}
$$

EXPONENTIAL and LOGARITHMIC FUNCTIONS

$$
\begin{aligned}
& 0<a<1 \\
& y=a^{x} \\
& x=0 \Rightarrow y=1 \\
& x \rightarrow+\infty \quad \Rightarrow y \rightarrow 0 \\
& x \rightarrow-\infty \quad \Rightarrow y \rightarrow+\infty
\end{aligned}
$$

$$
\begin{aligned}
& a>1 \\
& y=a^{x} \\
& x=0 \Rightarrow y=1 \\
& x \rightarrow+\infty \quad \Rightarrow \quad y \rightarrow+\infty \\
& x \rightarrow-\infty \quad \Rightarrow \quad y \rightarrow 0
\end{aligned}
$$

Two very important cases are when $a=10$ and $a=e$.

$$
\begin{array}{ll}
y=10^{x} & \text { logarithm to base } 10 \quad \log _{10} y=x \\
y=e^{x} & \text { natural logarithm to base } e \quad \log _{e} y \equiv \ln y=x
\end{array}
$$

The number e is a famous irrational number, and is one of the most important numbers in mathematics and the physical sceience. e is often called Euler's number (after Leonhard Euler: Euler - pronounced as like "Oiler").

$$
e=2.71828182845904523536028747135274 \ldots
$$

The number e is of eminent importance in mathematics alongside $0,1, \pi$ and i. All five of these numbers play important and recurring roles across mathematics and the science. These five constants appear in Euler's identity: $\quad e^{i \pi}+1=0 \quad i=\sqrt{-1}$.

logarithm to base 10

$$
y=\log _{10} x
$$

natural logarithm to base $e \quad y=\log _{e} x \equiv \ln x$

$$
\begin{aligned}
& x=10^{\log _{10} x} \\
& \log (x y)=\log x+\log y \\
& \log (y / x)=\log y-\log x \\
& \log \left(x^{n}\right)=n \log x \\
& \log \left(\frac{1}{x}\right)=\log \left(x^{-1}\right)=-\log x
\end{aligned}
$$

An important example of an exponential function is exponetial decay. We will consider the example of radioactive decay. An unstable radioactive nuclei has a certain probabilty of decaying at any instant. At time $t=0$, let their be N_{0} unstable nuclei. Then at any time t the number N unstable nuclei remaining is given by the exponential function

$$
N=N_{0} e^{-t\left(\ln 2 / t_{1 / 2}\right)}
$$

where $t_{1 / 2}$ is known as the half-life and is the time in which the number of unstable nuclei halves.
For the graph below: $N_{0}=100 \quad t_{1 / 2}=20$. Notice that N reduces by 50% every 20 time units.

POWER FUNCTIONS

$$
y=\sqrt{x}=x^{1 / 2} \quad y=x^{1 / 3}
$$

