GRAPHS AND LINEAR FUNCTIONS

FUNCTIONS

The concept of a function is already familiar to you. Since this concept is fundamental to mathematics, science and engineering we will briefly review it.

When we say that y is a function of x, we mean that if we take the value x_{1} then there is a corresponding value y_{1}. Thus, a function is a rule for associating a number y_{1} with each number x_{1}

$$
y \text { is a function of } x \quad x_{1} \rightarrow y_{1} \Rightarrow y=f(x) \quad y=y(x)
$$

In mathematics the symbols x and y are used too often. Consider the function describing the Stefan-Boltzmann equation which relates the surface temperature of on object to the net power radiated / absorbed from that surface.

$$
P=\varepsilon \sigma A\left(T^{4}-T_{o}^{4}\right)
$$

In a functional relationship you must always distinguish between the symbols representing the variables and the symbols representing constants. For the Stefan-Boltzmann equation

```
P power (variable)
T surface temperature of the surface (variable)
T}\mp@subsup{T}{0}{}\mathrm{ temperature of environment surrounding object (constant)
    \varepsilon characteristic of the surface (constant)
    \sigma Stefan-Boltzmann constant (constant)
A surface area of object (constant)
```

To gain insight to a functional relationship, the variables are often plotted against each other to create a graph. The graph of P (y variable) against T^{4} (x variable) is a straight line.

The variable x is often called the independent variable because we can select a value of x and then associate with it a value of y, the dependent variable. In the sciences and engineering, it is good practice never use the terms independent variable and dependent variable, always just consider the functional relationship between the variables.

GRAPHICAL REPRESENTATION OF FUNCTIONS

A convenient representation of a function $y=f(x)$ is a graph which uses a right-angled Cartesian coordinate system labelled the abscissa (horizontal X-axis) and the ordinate (vertical Y -axis). The axes intersect at the point called the origin O which has the Cartesian coordinates (0, 0).

The Cartesian coordinates of a point P are usually written as $\left(x_{P}, y_{P}\right)$. The point P can also be located on a graph using polar coordinates $\left(r_{P}, \theta_{P}\right)$ where r_{P} is the distance OP and θ_{P} is the angle the line OP makes with the X-axis. The use of polar coordinates is important in plotting complex numbers (Topic 2) on Argand Diagrams (XY graph: X-axis: real part of the complex number and Y-axis: complex part of the real number).

The simplest type of function is the linear function

$$
\begin{equation*}
a x+b y+c=0 \tag{1}
\end{equation*}
$$

where x and y are the variables and a, b and c are the constants. In a linear function, the variables are only raised to the first power. Equation (1) is not the most useful way of expressing a linear function. The most useful expression for a linear relationship is given by equation (2)
(2) $\quad y=m x+b \quad$ variables $x, y \quad$ constants m, b

The graph of a linear function is a straight line. The intercept b on the Y -axis is the y value at $x=0$. If we take two points on the straight line with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ then the slope m or gradient of the straight line is defined by

$$
\begin{align*}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { slope (gradient) } \tag{3}\\
& \qquad \\
& \qquad \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{m x_{2}+b-\left(m x_{1}+b\right)}{x_{2}-x_{1}}=m
\end{align*}
$$

If we differentiate equation (2) with respect to x, then the derivative $d y / d x$ is equal to the gradient or slope of the straight line
(4) $\quad d y / d x=m \quad$ slope (gradient)

The gradient can also be expressed as
(5) $m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}$

Linear graphs are very important in the analysis of data because they are characterised by two parameters m and b and it is easy to see if a set of data points lie on a straight line, whereas, it is difficult to decide if a set of points corresponds to a particular curve. In data analysis, wherever possible we try to convert a function to a linear function in drawing a graph to establish relationships between variables. For example, in the Stefan-Boltzmann equation, P plotted against T is a curved line, however by plotting P against T^{4} we get a straight line.

Linear Relationship and straight line graph $\quad y=m x+b$

- X-axis $y=0$
- Y-axis $\quad x=0$
- Straight line parallel to the X-axis $y=b \quad m=0$
- Straight line parallel to the Y-axis $\quad x=b_{x} \quad m=\infty$
- Two parallel lines $m_{1}=m_{2}$
- Two perpendicular lines (lines at right angles to each other)
$m_{1} m_{2}=-1 \quad m_{1}=\frac{-1}{m_{2}} \quad m_{2}=\frac{-1}{m_{1}}$
- If two lines $y=m_{1} x+b_{1}$ and $y=m_{2} x+b_{2}$ intersect at the point $P\left(x_{P}, y_{P}\right)$ then

$$
y_{P}=m_{1} x_{P}+b_{1}=m_{2} x_{P}+b_{2}
$$

Example
For $-15<x<15$

- Plot the function $y=-2 x+10$
- Plot the function $y=3 x-5$
- At the point $x=-4$, plot the straight line which is perpendicular to the line $y=-2 x+10$
- Calculate the Cartesian coordinates of the three intersection points P, Q and R for the three straight lines.

To show that two lines are perpendicular in your plot the X and Y axes must have the same scale.

To plot a straight line graph, you only need to select the Cartesian coordinates for two points:

$$
\begin{aligned}
& y=-2 x+10 \quad x_{1}=0 \quad y_{1}=10 \quad x_{2}=5 \quad y_{2}=0 \\
& y=3 x-5 \quad x_{1}=0 \quad y_{1}=-5 \quad x_{2}=5 \quad y_{2}=10
\end{aligned}
$$

For perpendicular line:

$$
\begin{aligned}
& y=-2 x+10 \quad m_{1}=-2 \quad b_{1}=10 \\
& \perp \text { line } \\
& \quad y=m_{2} x+b_{2} \quad m_{2}=-1 / m_{1}=1 / 2 \quad b_{2}=y-x / 2 \\
& \text { intersection point } \quad x=-4 \quad y=-2 x+10=(-2)(-4)+10=18 \\
& b_{2}=y-x / 2=18-(-4) / 2=20 \\
& y=x / 2+20 \quad x=-4 \quad y=18
\end{aligned}
$$

Intersection points

$$
\begin{array}{ccc}
y=-2 x+10=3 x-5 & y=-2 x+10=x / 2+20 & y=3 x-5=x / 2+20 \\
x=3 & y=4 & x=-4
\end{array} \quad y=18 \quad x=10 \quad y=25
$$

Example

Find the equation of the linear function through the points $(-3,6)$ and $(6,-3)$

Solution

Equation of a linear function: $\quad y=m x+b$
Substitute in the coordinates for the two points: (A) $6=-3 m+b$ (B) $-3=6 m+b$
Solve for m and $b: E q(A)-E q(B) \quad 9=-9 m \quad \Rightarrow \quad m=-1 \quad b=3$
The linear relationship is $y=-x+3$

Alternatively:

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-6}{6-(-3)}=-1 \\
& y=-x+b \quad b=y_{1}+x_{1}=-3+6=3 \\
& y=-x+3
\end{aligned}
$$

MORE ON FUNCTIONS

A polynomial is a function of the form

$$
y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{i=0}^{n} a_{i} x^{i}
$$

The degree of the polynomial is n (n integer $n=0,1,2, \ldots$). Such a function is defined for all values of x and x is finite.

A linear function $(n=1)$ is a polynomial of degree 1 .
A polynomial of degree $2(n=2)$ is called a quadratic function

$$
y=a_{0}+a_{1} x+a_{2} x^{2}
$$

The quadratic function is mostly expressed as

$$
y=a x^{2}+b x+c
$$

The graph of a quadratic function is a parabola. If there are real values of x for which $y=0$, the parabola will intersect the X -axis at

$$
\text { real roots } \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad b^{2}-4 a c \geq 0
$$

Polynomial functions are called single-valued functions because there is only one value of y for each value of x. The function $y^{2}=x$ is a multi-valued function since there are two values of y for each value of $x:+\sqrt{x_{1}}$ and $-\sqrt{x_{1}}$

Functions can depend upon a number of variables. For example, the pressure p of a gas in a container depends upon the volume V of the container and the temperature T of the gas.

$$
p=\frac{n R T}{V} \quad \text { variabels }(p, T, V) \quad \text { constants }(n, R)
$$

This is an example of an explicit function, since the equation can be rearranged to make the variables V or T the subject of the equation

$$
p=\frac{n R T}{V} \quad V=\frac{n R T}{p} \quad T=\frac{p V}{n R} \quad \text { explicit function }
$$

This is not the case for the equation below in regard to the variable V. This is an example of an implicit function

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \quad \text { implicit function }
$$

A useful classification of functions is into even and odd functions.
An even function of x is one that remains unchanged when the sign of x is reversed

$$
f(-x)=f(x) \quad \text { even function }
$$

whereas an odd function changes sign

$$
f(-x)=-f(x) \quad \text { odd function }
$$

Many students misinterpret the terms proportional (directly proportional) and inverse proportional. They conclude that if y increases as x increases then x and y are proportional to each other and if y decreases as increases then x and y are inversely proportional. These conclusions are wrong.

"All students" studying mathematics know that $y=m x+b$ is the equation of a straight line and $y=x^{2}$ is the equation of a parabola. But what about the equations

$$
v=u+a t \text { and } s=u t+\frac{1}{2} a t^{2} \text { ? ? ? }
$$

Sadly, the majority of students doing physics don't recognize that $v=u+a t$ is also a straight line and $s=u t+\frac{1}{2} a t^{2}$ is a parabola. These two equations describe an object moving with a constant acceleration.

The variables are t (time), v (velocity at time t) and s (displacement at time $t, t=0 \mathrm{~s}=0$) while the constants are u (initial velocity, $t=0, v=u$) and a (constant acceleration).

$$
\begin{aligned}
& \text { velocity } \quad v=\frac{d s}{d t} \Rightarrow \text { velocity = slope of } s / t \text { graph } \\
& \text { acceleration } \quad a=\frac{d v}{d t} \Rightarrow \quad \text { acceleration = slope of } v / t \text { graph } \\
& a=\text { constant } \Rightarrow \frac{d a}{d t}=0 \Rightarrow \quad \text { slope of } a / t \text { graph }=0 \\
& \text { straight line } \quad y=m x+b \quad \Leftrightarrow v=u+a t \\
& y \Leftrightarrow v \quad x \Leftrightarrow t \quad b \Leftrightarrow u \quad m \Leftrightarrow a \\
& \text { parabola } \quad y=a x^{2}+b x+c \quad \Leftrightarrow s=u t+\frac{1}{2} a t^{2} \\
& y \Leftrightarrow s \quad x \Leftrightarrow t \quad a \Leftrightarrow \frac{1}{2} a \quad b \Leftrightarrow u \quad c=0
\end{aligned}
$$

To improve your understanding in interpreting graphs you should do the online Activity
Simulation - Workshop - Uniform Acceleration

