

ADVANCED HIGH SCHOOL MATHEMATICS

CONICS

RECTANGULAR HYPERBOLA

A hyperbola for which the asymptotes are perpendicular is a rectangular hyperbola and is also called an equilateral hyperbola or right hyperbola. This occurs when the semimajor a and semiminor *b* axes are equal, a = b.

equation

 $x^2 - y^2 = a^2$ rectangular hyperbola opening to the left and right

eccentricity $c^{2} = a^{2} + b^{2}$ a = b $c = a\sqrt{2}$ $e = \frac{c}{a} = \sqrt{2}$

directrix

$$x = \pm \frac{a^2}{c} = \pm \frac{a}{\sqrt{2}}$$

asymptotes $y = \pm x$

Example: Verify the information shown in the figure below

a = 5	b = 5	c = 7.07			
P(x, y) = (7.5, 5.59)					
$A_1(x, y) = (-5, 0)$			A ₂ (x, y)) = (5, 0)	
F ₁ (x, y) = (-7.07, 0)		F ₂ (x, y) = (7.07, 0)			
D = (3.54, 5.59)					
eccentricity e = 1.41					
directrices 1: $x = -3.54$			directric	ces 2: x = 3.54	
slope tangent M ₁ = 1.34			slope n	ormal M ₂ = -0.745	
intercept tangent B ₁ = -4.47			intercept normal B ₂ = 11.2		
T tangent cross X-axis: x _T = 3.33			N norm	al cross X-axis: x _N = 15	
distances: $PF_1 = 15.6$ $PF_2 = 5.61$ $ PF_1 - PF_2 = 10$					
distances: $PF_2 = 5.61$ PD = 3.96 $PF_2 / PD = 1.41$					
$x_p^2 / a^2 - y_p^2 / b^2 = 1$ asymptotes $y = 1 \times asymptotes y = -1 \times asymptotes y $					

Rectangular hyperbola opening in the first and third quadrants has the Cartesian equation

$$x y = \frac{a^2}{2} \qquad y = \frac{a^2/2}{x}$$

Example: Verify the information shown in the figure below $(x^2 - y^2 = 2)$ $a = b = \sqrt{2}$)

a = 1.41 b = 1.41 c = 2					
P(x, y) = (7.5, 7.365)					
$A_1(x, y) = (-1.41, 0)$ $A_2(x, y)$	= (1.41, 0)				
$F_1(x, y) = (-2, 0)$ $F_2(x, y)$	$F_2(x, y) = (2, 0)$				
D = (1, 7.365)					
eccentricity e = 1.41					
directrices 1: x = -1 directric	directrices 2: $x = 1$				
slope tangent M ₁ = 1.02 slope no	slope normal M ₂ = -0.982				
intercept tangent B ₁ = -0.272 intercep	intercept normal B ₂ = 14.7				
T tangent cross X-axis: x _T = 0.267 N norma	al cross X-axis: x _N = 15				
distances: PF ₁ = 12 PF ₂ = 9.19	PF ₁ - PF ₂ = 2.83				
distances: $PF_2 = 9.19$ PD = 6.5	PF ₂ / PD = 1.41				
$x_P^2 / a^2 - y_P^2 / b^2 = 1$ asymptotes $y = 1 \times asymptotes y = -1 \times asymptotes y $					

Example: Verify the information shown in the figure below ($x \ y = 1$ y = 1/x $a = b = \sqrt{2}$)

The vertices A_1 and A_2 can be found from the solution of the equations

y=1/x and $y=x \implies x=1$ y=1 and x=-1 y=-1

The Cartesian coordinates are $A_1(-1, -1)$ and $A_2(1,1)$

The parameter *a* is equal to the distance OA_2 $a = \sqrt{1^2 + 1^2} = \sqrt{2}$

For a rectangular hyperbola $a = b = \sqrt{2}$ $c^2 = a^2 + b^2 \implies c = 2$

The focal length is c = 2 (distance $F_1 = F_2 = 2$), therefore, the Cartesian coordinates of F_1 and F_2 are

$$F_1(-\sqrt{2}, -\sqrt{2})$$
 and $F_2(\sqrt{2}, \sqrt{2})$

The eccentricity *e* is $e = \frac{c}{a} = \frac{2}{\sqrt{2}} = \sqrt{2}$

ROTATION OF AXES

The equation for the rectangular hyperbola $x y = a^2 / 2$ is the hyperbola $x^2 - y^2 = a^2$ referred to an XY coordinate system that has been rotated anticlockwise through an angle of 45°.

Suppose that a set of XY-coordinate axes has been rotated about the origin by an angle θ , where $0 < \theta < \pi/2$, to form a new set of X'Y' axes. We would like to determine the coordinates for a point P in the plane relative to the two coordinate systems.

From the two right angle triangles shown in the figure, we can give the coordinates of the point P in Cartesian and polar coordinates for both sets of axes.

$$P(x, y)$$

$$x = R\cos(\theta + \phi) = R\cos\theta\cos\phi - R\sin\theta\sin\phi$$

$$y = R\sin(\theta + \phi) = R\sin\theta\cos\phi + R\cos\theta\sin\phi$$

$$P(x', y')$$

$$x' = R\cos(\phi)$$

$$y' = R\sin(\phi)$$

$$x = x'\cos\theta - y'\sin\theta$$
$$y = x'\sin\theta + y'\cos\theta$$

$$x\cos\theta = x'\cos^2\theta - y'\sin\theta\cos\theta$$
$$y\sin\theta = x'\sin^2\theta + y'\sin\theta\cos\theta$$

$$x' = x\cos\theta + y\sin\theta$$
$$y' = -x\sin\theta + y\cos\theta$$

Coordinate Rotation Formulas If a rectangular XY coordinate system is rotated through an angle θ to form an X'Y' coordinate system, then a point P(*x*, *y*) will have coordinates P(*x*', *y*') in the new system, where (*x*, *y*) and (*x*', *y*') are related by

$$x = x'\cos\theta - y'\sin\theta \qquad y = x'\sin\theta + y'\cos\theta$$
$$x' = x\cos\theta + y\sin\theta \qquad y' = -x\sin\theta + y\cos\theta$$

Example

Show that the graph of the equation $x y = a^2 / 2$ is a hyperbola by rotating the XY axes through an angle of $\pi/4$ rad (45°).

Solution

Denoting a point in the rotated system by
$$(x', y')$$
, we have
 $x = x'\cos\theta - y'\sin\theta$ $y = x'\sin\theta + y'\cos\theta$
 $\theta = \pi / 4$ rad $\sin\theta = 1/\sqrt{2}$ $\cos\theta = 1/\sqrt{2}$
 $x y = \left(\frac{1}{\sqrt{2}}\right)(x' - y')\left(\frac{1}{\sqrt{2}}\right)(x' + y')$
 $x y = \frac{1}{2}(x'^2 - y'^2) = \frac{a^2}{2}$
 $x'^2 - y'^2 = a^2$

In the X'Y' coordinate system, then, we have a standard position hyperbola whose asymptotes are $y' = \pm x'$.

The constant a is the distance from the origin O(0, 0) to one of the vertices (A₁ or A₂) of the hyperbola.

The constant c is the distance from the origin O(0, 0) to one of the focal points (F₁ or F₂).

The constant *d* is the length of the perpendicular line joining a point (D_1 or D_2) on one of the directrices to the origin O(0, 0).

The transformation of points and lines between the X'Y' and XY Cartesian coordinate systems is done by using the relationships

$$\theta = \pi / 4 \text{ rad} = 45^{\circ}$$

$$x = \frac{1}{\sqrt{2}} (x' - y') \qquad y = \frac{1}{\sqrt{2}} (x' + y')$$

$$x' = \frac{1}{\sqrt{2}} (x + y) \qquad y' = \frac{1}{\sqrt{2}} (-x + y)$$

Vertex A₂

X'Y' axes
$$A_2(a, 0)$$
 $x' = a$ $y' = 0$
XY axes $A_2(a / \sqrt{2}, a / \sqrt{2})$ $x = a / \sqrt{2}$ $y = a / \sqrt{2}$

Focal Point F₂
$$c = \sqrt{2} a$$

X'Y' axes F₂($\sqrt{2} a$, 0) $x' = \sqrt{2} a$ $y' = 0$
XY axes F₂(a, a) $x = a$ $y = a$

Point D₂ on directrix
$$d = a / \sqrt{2}$$

X'Y' axes D₂ $\left(a / \sqrt{2}, 0\right)$ $x' = a / \sqrt{2}$ $y' = 0$
XY axes D₂ $\left(a / 2, a / 2\right)$ $x = a / 2$ $y = a / 2$

Asymptotes

X'Y' axes y'=x' y'=-x'XY axes x=0 y=0

Directrices

X'Y' axes x' = -a/2 y' = 0 x' = a/2 y' = 0XY axes y = -x + a y = -x - a

Parametric equation for a rectangular hyperbola

The equation for the rectangular hyperbola is

$$x y = \frac{a^2}{2}$$

where *a* is the distance from the origin to a vertex. This equation can be expressed in parametric

coordinates $\left(kt, \frac{k}{t}\right)$ where k is a constant and t is a variable parameter. For a point on the

hyperbola

$$x y = \left(k t\right) \left(\frac{k}{t}\right) = k^2$$

Hence $x y = k^2 = \frac{a^2}{2}$ $k = \frac{a}{\sqrt{2}}$ $a = \sqrt{2}k$

The focal length c (distance from the origin to a focal point) is

$$c = \sqrt{2} a = 2k \quad k = \frac{c}{2}$$

*** In these notes c is used exclusively to represent the focal length. However, the syllabus and in exam questions, unfortunately in some instances c is used as the focal length and at other times it is used as an arbitrary constant. The syllabus expresses the equation for the rectangular hyperbola in parametric form as $\left(ct, \frac{c}{t}\right)$ but c is just a constant and not the focal length. In my notes, I will use k for the constant and c to be the focal length. This is a much better approach.