

ADVANCED HIGH SCHOOL MATHEMATICS

CONICS

RECTANGULAR HYPERBOLA

A hyperbola for which the asymptotes are perpendicular is a rectangular hyperbola and is also called an equilateral hyperbola or right hyperbola. This occurs when the semimajor a and semiminor b axes are equal, $a=b$.

$$
\begin{array}{ll}
\text { equation } & x^{2}-y^{2}=a^{2} \quad \text { rectangular hyperbola opening to the left and right } \\
\text { eccentricity } & c^{2}=a^{2}+b^{2} \quad a=b \quad c=a \sqrt{2} \quad e=\frac{c}{a}=\sqrt{2} \\
\text { directrix } & x= \pm \frac{a^{2}}{c}= \pm \frac{a}{\sqrt{2}} \\
\text { asymptotes } & y= \pm x
\end{array}
$$

Example: Verify the information shown in the figure below
$a=5$
b $=5$
$c=7.07$
$P(x, y)=(7.5,5.59)$
$A_{1}(x, y)=(-5,0)$
$\mathrm{A}_{2}(\mathrm{x}, \mathrm{y})=(5,0)$
$F_{1}(x, y)=(-7.07,0)$ $F_{2}(x, y)=(7.07,0)$
$\mathrm{D}=(3.54,5.59)$
eccentricity $\mathrm{e}=1.41$
directrices 1: $x=-3.54$
directrices $2: x=3.54$
slope tangent $M_{1}=1.34$ slope normal $M_{2}=-0.745$
intercept tangent $B_{1}=-4.47$ intercept normal $B_{2}=11.2$

T tangent cross X -axis: $\mathrm{x}_{\mathrm{T}}=3.33$ N normal cross X -axis: $\mathrm{X}_{\mathrm{N}}=15$
distances: $\mathrm{PF}_{1}=15.6$
$\mathrm{PF}_{2}=5.61 \quad\left|\mathrm{PF}_{1}-\mathrm{PF}_{2}\right|=1$
distances: $\mathrm{PF}_{2}=5.61$
$P D=3.96$
$\mathrm{PF}_{2} / \mathrm{PD}=1.41$
$x_{P}^{2} / a^{2}-y_{P}^{2} / b^{2}=1 \quad$ asymptotes $y=1 x$ asymptotes $y=-1 x$

Rectangular hyperbola opening in the first and third quadrants has the Cartesian equation

$$
x y=\frac{a^{2}}{2} \quad y=\frac{a^{2} / 2}{x}
$$

$$
a=\sqrt{2} \Rightarrow x^{2}-y^{2}=2 \quad y= \pm\left(x^{2}-2\right)
$$

$x y=\frac{a^{2}}{2} \quad y=\frac{a^{2} / 2}{x}$

$$
a=\sqrt{2} \Rightarrow x y=1 \quad y=1 / x
$$

Rotate graph 45° iclockwise to give plot on right

Rotate graph 45° anticlockwise to give plot on right

Example: Verify the information shown in the figure below $\left(x^{2}-y^{2}=2 \quad a=b=\sqrt{2}\right)$
$a=1.41 \quad b=1.41 \quad c=2$
$P(x, y)=(7.5,7.365)$
$A_{1}(x, y)=(-1.41,0)$
$A_{2}(x, y)=(1.41,0)$
$F_{1}(x, y)=(-2,0)$
$F_{2}(x, y)=(2,0)$
$D=(1,7.365)$
eccentricity $\mathrm{e}=1.41$
directrices $1: x=-1$
directrices 2: $x=1$
slope tangent $M_{1}=1.02$
slope normal $M_{2}=-0.982$
intercept tangent $B_{1}=-0.272$
intercept normal $B_{2}=14.7$
T tangent cross X -axis: $\mathrm{x}_{\mathrm{T}}=0.267 \mathrm{~N}$ normal cross X -axis: $\mathrm{x}_{\mathrm{N}}=15$
distances: $P F_{1}=12$
$\mathrm{PF}_{2}=9.19$
$\left|P F_{1}-P F_{2}\right|=2.83$
distances: $\mathrm{PF}_{2}=9.19$
$P D=6.5$
$\mathrm{PF}_{2} / \mathrm{PD}=1.41$
$x_{P}^{2} / a^{2}-y_{P}^{2} / b^{2}=1 \quad$ asymptotes $y=1 x$ asymptotes $y=-1 x$

Example: Verify the information shown in the figure below (x y=1 $\quad y=1 / x \quad a=b=\sqrt{2}$)

The vertices A_{1} and A_{2} can be found from the solution of the equations

$$
y=1 / x \text { and } y=x \Rightarrow x=1 \quad y=1 \quad \text { and } \quad x=-1 \quad y=-1
$$

The Cartesian coordinates are $\mathrm{A}_{1}(-1,-1)$ and $\mathrm{A}_{2}(1,1)$
The parameter a is equal to the distance $\mathrm{OA}_{2} \quad a=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
For a rectangular hyperbola $a=b=\sqrt{2} \quad c^{2}=a^{2}+b^{2} \quad \Rightarrow \quad c=2$

The focal length is $c=2$ (distance $F_{1}=F_{2}=2$), therefore, the Cartesian coordinates of F_{1} and F_{2} are

$$
\mathrm{F}_{1}(-\sqrt{2},-\sqrt{2}) \text { and } \mathrm{F}_{2}(\sqrt{2}, \sqrt{2})
$$

The eccentricity e is $e=\frac{c}{a}=\frac{2}{\sqrt{2}}=\sqrt{2}$

ROTATION OF AXES

The equation for the rectangular hyperbola $x y=a^{2} / 2$ is the hyperbola $x^{2}-y^{2}=a^{2}$ referred to an XY coordinate system that has been rotated anticlockwise through an angle of 45°.

Suppose that a set of $X Y$-coordinate axes has been rotated about the origin by an angle θ, where $0<\theta<\pi / 2$, to form a new set of $X^{\prime} Y^{\prime}$ axes. We would like to determine the coordinates for a point P in the plane relative to the two coordinate systems.

From the two right angle triangles shown in the figure, we can give the coordinates of the point P in Cartesian and polar coordinates for both sets of axes.

$$
\begin{aligned}
& P(x, y) \\
& \quad x=R \cos (\theta+\phi)=R \cos \theta \cos \phi-R \sin \theta \sin \phi \\
& y=R \sin (\theta+\phi)=R \sin \theta \cos \phi+R \cos \theta \sin \phi \\
& P\left(x^{\prime}, y^{\prime}\right) \\
& x^{\prime}=R \cos (\phi) \\
& y^{\prime}=R \sin (\phi) \\
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta \\
& \\
& x \cos \theta=x^{\prime} \cos ^{2} \theta-y^{\prime} \sin \theta \cos \theta \\
& y \sin \theta=x^{\prime} \sin ^{2} \theta+y^{\prime} \sin \theta \cos \theta \\
& x^{\prime}=x \cos \theta+y \sin \theta \\
& y^{\prime}=-x \sin \theta+y \cos \theta
\end{aligned}
$$

Coordinate Rotation Formulas If a rectangular XY coordinate system is rotated through an angle θ to form an $X^{\prime} Y^{\prime}$ coordinate system, then a point $\mathrm{P}(x, y)$ will have coordinates $\mathrm{P}\left(x^{\prime}, y^{\prime}\right)$ in the new system, where (x, y) and (x^{\prime}, y^{\prime}) are related by

$$
\begin{array}{lc}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta & y=x^{\prime} \sin \theta+y^{\prime} \cos \theta \\
x^{\prime}=x \cos \theta+y \sin \theta & y^{\prime}=-x \sin \theta+y \cos \theta
\end{array}
$$

Example

Show that the graph of the equation $x y=a^{2} / 2$ is a hyperbola by rotating the XY axes through an angle of $\pi / 4 \mathrm{rad}\left(45^{\circ}\right)$.

Solution

Denoting a point in the rotated system by (x^{\prime}, y^{\prime}), we have

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta \\
& \theta=\pi / 4 \mathrm{rad} \quad \sin \theta=1 / \sqrt{2} \quad \cos \theta=1 / \sqrt{2} \\
& x y=\left(\frac{1}{\sqrt{2}}\right)\left(x^{\prime}-y^{\prime}\right)\left(\frac{1}{\sqrt{2}}\right)\left(x^{\prime}+y^{\prime}\right) \\
& x y=\frac{1}{2}\left(x^{\prime 2}-y^{\prime 2}\right)=\frac{a^{2}}{2} \\
& x^{\prime 2}-y^{\prime 2}=a^{2}
\end{aligned}
$$

In the $X^{\prime} Y^{\prime}$ coordinate system, then, we have a standard position hyperbola whose asymptotes are $y^{\prime}= \pm x^{\prime}$.

The constant a is the distance from the origin $\mathrm{O}(0,0)$ to one of the vertices $\left(\mathrm{A}_{1}\right.$ or $\left.\mathrm{A}_{2}\right)$ of the hyperbola.

The constant c is the distance from the origin $O(0,0)$ to one of the focal points (F_{1} or F_{2}).

The constant d is the length of the perpendicular line joining a point (D_{1} or D_{2}) on one of the directrices to the origin $\mathrm{O}(0,0)$.

The transformation of points and lines between the $X^{\prime} Y^{\prime}$ and $X Y$ Cartesian coordinate systems is done by using the relationships

$$
\begin{array}{ll}
\theta=\pi / 4 \mathrm{rad}=45^{\circ} & \\
x=\frac{1}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right) & y=\frac{1}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right) \\
x^{\prime}=\frac{1}{\sqrt{2}}(x+y) & y^{\prime}=\frac{1}{\sqrt{2}}(-x+y)
\end{array}
$$

Vertex A_{2}

$X^{\prime} Y^{\prime}$ axes $\quad \mathrm{A}_{2}(a, 0) \quad x^{\prime}=a \quad y^{\prime}=0$
XY axes $\quad \mathrm{A}_{2}(a / \sqrt{2}, a / \sqrt{2}) \quad x=a / \sqrt{2} \quad y=a / \sqrt{2}$

Focal Point $\mathrm{F}_{2} \quad c=\sqrt{2} a$

$$
\begin{array}{lll}
\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \text { axes } & \mathrm{F}_{2}(\sqrt{2} a, 0) & x^{\prime}=\sqrt{2} a \quad y^{\prime}=0 \\
\mathrm{XY} \text { axes } & \mathrm{F}_{2}(a, a) & x=a \quad y=a
\end{array}
$$

Point D_{2} on directrix $\quad d=a / \sqrt{2}$

$$
\begin{array}{lll}
X^{\prime} Y^{\prime} \text { axes } & \mathrm{D}_{2}(a / \sqrt{2}, 0) & x^{\prime}=a / \sqrt{2} \quad y^{\prime}=0 \\
\mathrm{XY} \text { axes } & \mathrm{D}_{2}(a / 2, a / 2) & x=a / 2 \quad y=a / 2
\end{array}
$$

Asymptotes

$$
\begin{array}{lll}
X^{\prime} Y^{\prime} \text { axes } & y^{\prime}=x^{\prime} & y^{\prime}=-x^{\prime} \\
\mathrm{XY} \text { axes } & x=0 & y=0
\end{array}
$$

Directrices

$$
\begin{array}{lcl}
\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \text { axes } & x^{\prime}=-a / 2 & y^{\prime}=0
\end{array} \begin{array}{ll}
x^{\prime} & =a / 2 \quad y^{\prime}=0 \\
\mathrm{XY} \text { axes } & y=-x+a
\end{array}
$$

directrix

$$
y=-x+a
$$

Parametric equation for a rectangular hyperbola

The equation for the rectangular hyperbola is

$$
x y=\frac{a^{2}}{2}
$$

where a is the distance from the origin to a vertex. This equation can be expressed in parametric coordinates $\left(k t, \frac{k}{t}\right)$ where k is a constant and t is a variable parameter. For a point on the hyperbola

$$
x y=(k t)\left(\frac{k}{t}\right)=k^{2}
$$

Hence $\quad x y=k^{2}=\frac{a^{2}}{2} \quad k=\frac{a}{\sqrt{2}} \quad a=\sqrt{2} k$
The focal length c (distance from the origin to a focal point) is

$$
c=\sqrt{2} a=2 k \quad k=\frac{c}{2}
$$

*** In these notes c is used exclusively to represent the focal length. However, the syllabus and in exam questions, unfortunately in some instances c is used as the focal length and at other times it is used as an arbitrary constant. The syllabus expresses the equation for the rectangular hyperbola in parametric form as $\left(c t, \frac{c}{t}\right)$ but c is just a constant and not the focal length. In my notes, I will use k for the constant and c to be the focal length. This is a much better approach.

