ADVANCED HIGH SCHOOL MATHEMATICS

CONICS
HYPERBOLA

A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone.

https://en.wikipedia.org/wiki/Hyperbola

The orbit of a spacecraft can sometimes be a hyperbola. A spacecraft can use the gravity of a planet to alter its path and propel it at higher speed away from the planet and back out into space using a technique called gravitational slingshot effect.

When light is directed towards one focus of a hyperbolic reflector, the light is deflected to the other focus. This property can be useful in collecting light from stars. If a set of stars are roughly equidistant from the Earth, a hyperbolic reflector can reflect light rays from these stars to one of its foci.

An hyperbola can be defined as the locus of all points that satisfy the equation

$$
\frac{\left(x-x_{1}\right)^{2}}{a^{2}}-\frac{\left(y-y_{1}\right)^{2}}{b^{2}}=1
$$

Variables: (x, y) the coordinates of any point on the ellipse
Constants: $\left(x_{1}, x_{2}\right)$ the coordinates of the ellipse's centre
a, b hyperbola parameters

The equations for a hyperbola centred on the origin $(0,0)$ is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The hyperbola is symmetrical with respect to both the X -axis and Y -axis. The vertices of a hyperbola have the Cartesian coordinates $\mathrm{A}_{1}(-a, 0)$ and $\mathrm{A}_{2}(a, 0)$. Carefully examine the following graphs and take note of the position of the vertices A_{1} and A_{2} and how the shape of the hyperbola varies for the different values of a, b and b / a.

As seen from the equation and graph of a hyperbola it is a multi-valued function. For each value of x there are two y values.

The equation for an hyperbola with centre (0,0) with can also be given in parametric form

$$
\begin{aligned}
& x=a \sec (\theta) \\
& y=b \tan (\theta)
\end{aligned}
$$

where θ is an angle which ranges from 0 to 2π radians.

$$
\begin{aligned}
& x=a \sec (\theta) \quad y=b \tan (\theta) \\
& x^{2} / a^{2}=\sec ^{2}(\theta) \quad y^{2} / b^{2}=\tan ^{2}(\theta) \\
& x^{2} / a^{2}-y^{2} / b^{2}=\sec ^{2}(\theta)-\tan ^{2}(\theta)=1 \\
& \sec ^{2}(\theta)=1+\tan ^{2}(\theta)
\end{aligned}
$$

The equation for the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

has the vertices $\mathrm{A}_{1}(-a, 0)$ and $\mathrm{A}_{2}(a, 0)$ since $y=0 \Rightarrow x= \pm a$
The equation for the hyperbola which has the vertices on the Y -axis: $\mathrm{B}_{1}(0,-b$,$) and \mathrm{B}_{2}(0, a)$ since $x=0 \Rightarrow y= \pm b$ is

$$
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Carefully examine the graphs below for hyperbolas with different values of b / a.
Note: the X -axis and Y -axis have different scaling.

From viewing the above plots of the hyperbola, it is obvious that a hyperbola is actually two separate curves in mirror image. Some of the important terms associated with the graph of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are:

- The vertices where the hyperbola cuts either the X -axis are $\mathrm{A}_{1}(-a, 0)$ and $\mathrm{A}_{2}(a, 0)$.

These are the points where the curve makes its sharpest turn.

$$
y \text { must be real } \Rightarrow y= \pm b \sqrt{\frac{x^{2}}{a^{2}}-1} \Rightarrow|x| \geq a
$$

- The asymptotes show where the curve would go if continued indefinitely in each of
the four directions. For large values of $x \Rightarrow y= \pm b \sqrt{\frac{x^{2}}{a^{2}}-1} \rightarrow \pm\left(\frac{b}{a}\right) x \Rightarrow$ equations for asymptotes are: $\quad y=+\left(\frac{b}{a}\right) x \quad y=-\left(\frac{b}{a}\right) x$

When $x=a$ then the $y=+b$ and $y=-b$ on the asymptote $y=+\left(\frac{b}{a}\right) x$

When $x=-a$ then the $y=+b$ and $y=-b$ on the asymptote $y=-\left(\frac{b}{a}\right) x$

$$
c=\sqrt{a^{2}+b^{2}}
$$

- The two focal points are $F_{1}(-c, 0)$ and $F_{2}(c, 0)$.
- The two vertical straight lines $x=-c^{2} / a$ and $x=+c^{2} / a$ are each called a directrix.
- The X-axis and the Y-axis are both an axis of symmetry.
- Eccentricity e shows how "uncurvy" (varying from being a circle) the hyperbola is.

The eccentricity e is given by the formula

$$
e=\frac{c}{a}=\frac{\sqrt{a^{2}+b^{2}}}{a}=\sqrt{1+\frac{b^{2}}{a^{2}}}>1
$$

Let
distance from a focus F to a point P on the hyperbola $=d_{F P}$
distance from the same point P to the point D on the directrix which has the same ordinate as P (the line DP parallel to the X -axis or perpendicular to the Y -axis) $=d_{D P}$
then a hyperbola can be defined as the set of points P such that the ratio

$$
\frac{d_{F P}}{d_{D P}}=e>1 \quad \text { where } e \text { is a constant called the eccentricity }
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& e=\frac{c}{a}=\sqrt{1+\frac{b^{2}}{a^{2}}}>1
\end{aligned}
$$

For any point P on the hyperbola:

$$
\frac{d_{F_{2} P}}{d_{D P}}=e>1
$$

When P corresponds to the vertex A_{2} then

$$
\begin{aligned}
& d_{F_{2} P}=c-a \quad d_{D P}=a-a^{2} / c \\
& \frac{d_{F_{2} P}}{d_{D P}}=\frac{c-a}{a-a^{2} / c}=\frac{c^{2}-c a}{c a-a^{2}}=\frac{c(c-a)}{a(c-a)} \\
& \frac{d_{F_{2} P}}{d_{D P}}=\frac{c}{a}=e>1
\end{aligned}
$$

Consider the three point: $\mathrm{P}\left(x_{P}, y_{P}\right)$ any point on the hyperbola; the focus $\mathrm{F}_{2}(c, 0)$; and $\mathrm{D}\left(a^{2} / c, y_{P}\right)$
The distance from the focus F_{2} to the point $\mathrm{P}=d_{F_{2} P}$
The distance from the point D to the point $\mathrm{P}=d_{D P}$
Using the formula for the distance between two points

$$
d_{F_{2} P}=\sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}} \quad d_{D P}=x_{P}-a^{2} / c
$$

For a hyperbola

$$
\frac{d_{F_{2} P}}{d_{D P}}=e=\frac{c}{a}
$$

Combining these two relationships gives the Cartesian equation for a hyperbola

$$
\begin{aligned}
& \left(\frac{d_{F_{2} P}}{d_{D P}}\right)^{2}=\frac{c^{2}}{a^{2}}=\frac{\left(x_{P}-c\right)^{2}+y_{P}^{2}}{\left(x_{P}-a^{2} / c\right)^{2}} \\
& a^{2} x_{P}^{2}-2 a^{2} c x_{P}+a^{2} c^{2}+a^{2} y_{P}^{2}=c^{2} x_{P}^{2}-2 a^{2} c x_{P}+a^{4} \\
& \left(a^{2}-c^{2}\right) x_{P}^{2}+a^{2} y_{P}^{2}=a^{2}\left(a^{2}-c^{2}\right) \\
& c^{2}=a^{2}+b^{2} \quad a^{2}-c^{2}=-b^{2} \\
& -b^{2} x_{P}^{2}+a^{2} y_{P}^{2}=-a^{2} b^{2} \\
& \frac{x_{P}^{2}}{a^{2}}-\frac{y_{P}^{2}}{b^{2}}=1
\end{aligned}
$$

Derivation of the Cartesian form for a hyperbola from the locus of points, the difference of whose distances from two the two focal points is constant and equal to $2 a$.

A hyperbola is a conic section defined as the locus of all points P in the plane the difference of whose distances $d_{F_{1} P}$ and $d_{F_{2} P}$ from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant k

$$
\left|d_{F_{1} P}-d_{F_{2} P}\right|=k
$$

Letting P fall on the left vertex $\mathrm{A}_{1}(-a, 0)$ requires that

$$
\left|d_{F_{1} P}-d_{F_{2} P}\right|=k=|c-a-(c+a)|=2 a
$$

Let the point $\mathrm{P}\left(x_{P}, y\right)$ be on the hyperbola then using the definition of the hyperbola $\left|d_{F_{1} P}-d_{F_{2} P}\right|=2 a$ we can derive the equation of the hyperbola.

$$
\begin{array}{ll}
d_{F_{1} P}=\sqrt{\left(x_{P}+c\right)^{2}+y_{P}^{2}} & d_{F_{1} P}^{2}=\left(x_{P}+c\right)^{2}+y_{P}^{2} \\
d_{F_{2} P}=\sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}} & d_{F_{2} P}^{2}=\left(x_{P}-c\right)^{2}+y_{P}^{2}
\end{array}
$$

hyperbola

$$
\left|d_{F_{1} P}-d_{F_{2} P}\right|=2 a
$$

$$
c^{2}=a^{2}+b^{2}
$$

eccentricity

$$
e=\frac{c}{a}
$$

$$
\begin{aligned}
& \sqrt{\left(x_{P}+c\right)^{2}+y_{P}^{2}}-\sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}}=2 a \\
& \sqrt{\left(x_{P}+c\right)^{2}+y_{P}^{2}}=\sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}}+2 a \\
& \left(x_{P}+c\right)^{2}+y_{P}^{2}=\left(x_{P}-c\right)^{2}+y_{P}^{2}+4 a \sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}}+4 a^{2} \\
& x_{P}{ }^{2}+2 c x_{P}+c^{2}+y_{P}{ }^{2}-x_{P}^{2}+2 c x_{P}-c^{2}-y_{P}^{2}-4 a^{2}=4 a \sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& (c / a) x_{P}-a=\sqrt{\left(x_{P}-c\right)^{2}+y_{P}^{2}} \\
& (c / a)^{2} x_{P}^{2}-2 c x_{P}+a^{2}=\left(x_{P}-c\right)^{2}+y_{P}^{2} \\
& (c / a)^{2} x_{P}^{2}-2 c x_{P}-\left(x_{P}-c\right)^{2}-y_{P}^{2}=-a^{2} \\
& \left((c / a)^{2}-1\right) x_{P}^{2}-c^{2}-y_{P}^{2}=-a^{2} \\
& \left(\frac{a^{2}-c^{2}}{a^{2}}\right) x_{P}^{2}+y_{P}^{2}=a^{2}-c^{2} \quad c^{2}=a^{2}+b^{2} \quad a^{2}-c^{2}=-b^{2} \\
& \left(-b^{2} / a^{2}\right) x_{P}^{2}+y_{P}^{2}=-b^{2} \\
& \frac{x_{P}{ }^{2}}{a^{2}}-\frac{y_{P}^{2}}{b^{2}}=1 \\
& \Rightarrow \quad \text { equation of hyperbola } \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
\end{aligned}
$$

Equation of tangents to a hyperbola

The equation of a hyperbola with its centre at the origin is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The equation of the tangent to the hyperbola can be expressed as

$$
y=M_{1} x+B_{1}
$$

where M_{1} is the gradient and B_{1} is the intercept of the straight line and the equation of the normal can be expressed as

$$
y=M_{2} x+B_{2}
$$

where M_{2} is the gradient and B_{2} is the intercept of the straight line and

$$
M_{1} M_{2}=-1 \text { since the tangent and normal are perpendicular to each other. }
$$

The first derivative $d y / d x$ at a point $\mathrm{P}\left(x_{P}, y_{P}\right)$ on the hyperbola gives the gradient of the tangent to the ellipse at that point. The implicit differentiation of the equation for the hyperbola

$$
\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\left(\frac{b}{a}\right)^{2} \frac{x}{y}
$$

The gradient M_{1} of the tangent at the point $\mathrm{P}\left(x_{P}, y_{P}\right)$ is

$$
M_{1}=\left(\frac{b^{2}}{a^{2}}\right) \frac{x_{P}}{y_{P}}
$$

and the intercept B_{1} is

$$
B_{1}=y_{P}-M_{1} x_{P}=y_{P}-\left(\frac{b^{2}}{a^{2}}\right)\left(\frac{x_{P}^{2}}{y_{P}}\right)
$$

The tangent crosses the X -axis $(y=0)$ at the point $\mathrm{T}\left(x_{T}, 0\right)$ where

$$
x_{T}=\frac{a^{2}}{x_{P}}
$$

Proof

$$
\begin{aligned}
& y_{T}=0 \Rightarrow x_{T}=-B_{1} / M_{1}=-\left(\frac{y_{P}-\left(b^{2} / a^{2}\right)\left(x_{P}^{2} / y_{P}\right)}{\left(b^{2} / a^{2}\right)\left(x_{P} / y_{P}\right)}\right) \\
& x_{T}=-\frac{a^{2}}{x_{P}}\left(\frac{y_{P}^{2}}{b^{2}}-\frac{x_{P}^{2}}{a^{2}}\right) \quad \frac{y_{P}^{2}}{b^{2}}-\frac{x_{P}^{2}}{a^{2}}=-1 \\
& x_{T}=\frac{a^{2}}{x_{P}}
\end{aligned}
$$

Equation of a normal to an ellipse

$$
\begin{aligned}
& y=M_{2} x+B_{2} \\
& M_{2}=\frac{-1}{M_{1}}=-\left(\frac{a^{2}}{b^{2}}\right) \frac{y_{P}}{x_{P}}
\end{aligned}
$$

Intercept of normal B_{2}

$$
B_{2}=y_{P}+\left(\frac{a^{2}}{b^{2}}\right) y_{P}=y_{P}\left(\frac{a^{2}+b^{2}}{b^{2}}\right)
$$

The normal crosses the X -axis $(y=0)$ at the point $\mathrm{N}\left(x_{N}, 0\right)$ where

$$
x_{N}=\left(\frac{a^{2}+b^{2}}{a^{2}}\right) x_{P}
$$

Proof

$$
\begin{aligned}
& y_{N}=0 \Rightarrow x_{N}=-B_{2} / M_{2}=-\left(\frac{y_{P}\left(a^{2}+b^{2}\right)}{b^{2}}\right)\left(\frac{b^{2}}{-a^{2}}\right)\left(\left(\frac{x_{P}}{y_{P}}\right)\right) \\
& x_{N}=\frac{\left(a^{2}+b^{2}\right)}{a^{2}} x_{P}
\end{aligned}
$$

There is no need to remember these formulae for the tangent and normal to the ellipse. It is best to derive the equations from first principles.

Examples Consider the ellipse $9 x^{2}-25 y^{2}-225=0$
Verify all the numerical values and information in the following two figures for

$$
x_{P}=10.0 \text { and } x_{P}=7.5 .
$$

$\mathrm{a}=5 \quad \mathrm{~b}=3 \quad \mathrm{c}=5.83$
$P(x, y)=(10,5.196)$
$A_{1}(x, y)=(-5,0)$

$$
A_{2}(x, y)=(5,0)
$$

$F_{1}(x, y)=(-5.83,0)$ $F_{2}(x, y)=(5.83,0)$
$\mathrm{D}=(4.29,5.196)$
eccentricity $\mathrm{e}=1.17$
directrices 1: $x=-4.29$
directrices 2: $x=4.29$
slope tangent $M_{1}=0.693$
intercept tangent $B_{1}=-1.73$
slope normal $M_{2}=-1.44$

T tangent cross X -axis: $\mathrm{x}_{\mathrm{T}}=2.5$
intercept normal $B_{2}=19.6$
N normal cross X -axis: $\mathrm{X}_{\mathrm{N}}=13.6$
distances: $\mathrm{PF}_{1}=16.7$
$\mathrm{PF}_{2}=6.66$
$\left|\mathrm{PF}_{1}-\mathrm{PF}_{2}\right|=10$
distances: $\mathrm{PF}_{2}=6.66$
$\mathrm{PD}=5.71 \quad \mathrm{PF}_{2} / \mathrm{PD}=1.17$
$x_{P}^{2} / a^{2}-y_{P}^{2} / b^{2}=1$

$a=5 \quad b=3 \quad c=5.83$
$P(x, y)=(7.5,3.354)$
$A_{1}(x, y)=(-5,0)$
$A_{2}(x, y)=(5,0)$
$F_{1}(x, y)=(-5.83,0)$
$F_{2}(x, y)=(5.83,0)$
$D=(4.29,3.354)$
eccentricity $\mathrm{e}=1.17$
directrices $1: x=-4.29$
slope tangent $M_{1}=0.805$
directrices $2: x=4.29$
slope normal $M_{2}=-1.24$
intercept tangent $B_{1}=-2.68$
T tangent cross X -axis: $\mathrm{x}_{\mathrm{T}}=3.33$
N normal cross X-axis: $x_{N}=10.2$

$$
\begin{array}{lll}
\text { distances: } \mathrm{PF}_{1}=13.7 & \mathrm{PF}_{2}=3.75 & \left|\mathrm{PF}_{1}-P F_{2}\right|=10 \\
\text { distances: } \mathrm{PF}_{2}=3.75 & \mathrm{PD}=3.21 & \mathrm{PF}_{2} / \mathrm{PD}=1.17 \\
\mathrm{x}_{\mathrm{P}}^{2} / \mathrm{a}^{2}-\mathrm{y}_{\mathrm{P}}^{2} / \mathrm{b}^{2}=1 & &
\end{array}
$$

Reflective Properties of Hyperbolas

Rays directed toward the focus of hyperbola are reflected at the hyperbolic mirror to the other focus of hyperbola.

The angles θ_{1} and θ_{2} between the normal line and the straight lines drawn from the hyperbola focus to the given point are equal $\theta_{1}=\theta_{2}$.

This is an example of the Law of Reflection: the angle of incidence is equal to the angle of reflection measured from the normal.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad c^{2}=a^{2}+b^{2} \quad F_{1}(-c, 0) \quad F_{2}(c, 0) \quad P\left(x_{P}, y_{P}\right) \quad N\left(\frac{a^{2}+b^{2}}{a^{2}}, 0\right)
$$

$\tan \alpha_{1}=\frac{y_{P}}{x_{P}+c} \quad \tan \alpha_{2}=\frac{y_{P}}{x_{N}-x_{P}} \quad x_{N}=\frac{a^{2}+b^{2}}{a^{2}} \quad \tan \alpha_{3}=\frac{y_{P}}{x_{P}-c}$

$$
\begin{aligned}
& \theta_{1}=180-\alpha_{2}-\alpha_{3} \\
& \quad \theta_{2}=\alpha_{1}+\alpha_{2} \Rightarrow \theta_{1}=\theta_{2}
\end{aligned}
$$

Example

For the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$ and where P is a point on the hyperbola with $x_{P}=7.500$ verify the information and calculations shown below.

Calculations
$a=5 \quad b=3 \quad c=5.831$
Point P: $\quad x_{P}=7.500 \quad y_{P}=3.354$
Point N normal cuts X-axis: $\quad x_{N}=10.200 \quad y \mathrm{~N}=0$
focal points: $\quad x_{F_{1}}=-5.831 \quad y_{F_{1}}=0 \quad x_{F_{2}}=5.831 \quad y_{F_{2}}=0$
Angles:

$$
\begin{array}{ll}
\alpha_{1}=14.1226^{\circ} & \alpha_{2}=51.1665^{\circ} \quad \alpha_{3}=63.5444^{\circ} \\
\theta_{1}=65.289^{\circ} & \theta_{2}=65.2891^{\circ}=\theta_{1}
\end{array}
$$

Compare the calculated values with the above graph.
Note: It is always a good idea to label an angle using a lower case Greek letter.

