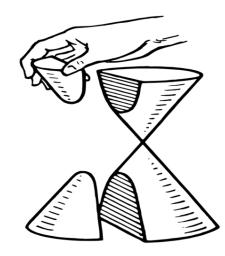


ADVANCED HIGH SCHOOL MATHEMATICS

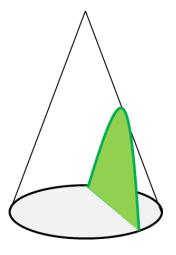
CONICS

HYPERBOLA

A **hyperbola** is **an open** curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone.

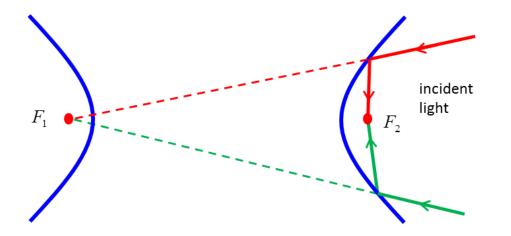


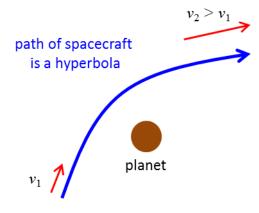
https://en.wikipedia.org/wiki/Hyperbola



The orbit of a spacecraft can sometimes be a **hyperbola**. A spacecraft can use the gravity of a planet to alter its path and propel it at higher speed away from the planet and back out into space using a technique called **gravitational slingshot effect**.

When light is directed towards one focus of a hyperbolic reflector, the light is deflected to the other focus. This property can be useful in collecting light from stars. If a set of stars are roughly equidistant from the Earth, a hyperbolic reflector can reflect light rays from these stars to one of its foci.





An hyperbola can be defined as the locus of all points that satisfy the equation

$$\frac{(x-x_1)^2}{a^2} - \frac{(y-y_1)^2}{b^2} = 1$$

Variables: (*x*, *y*) the coordinates of any point on the ellipse

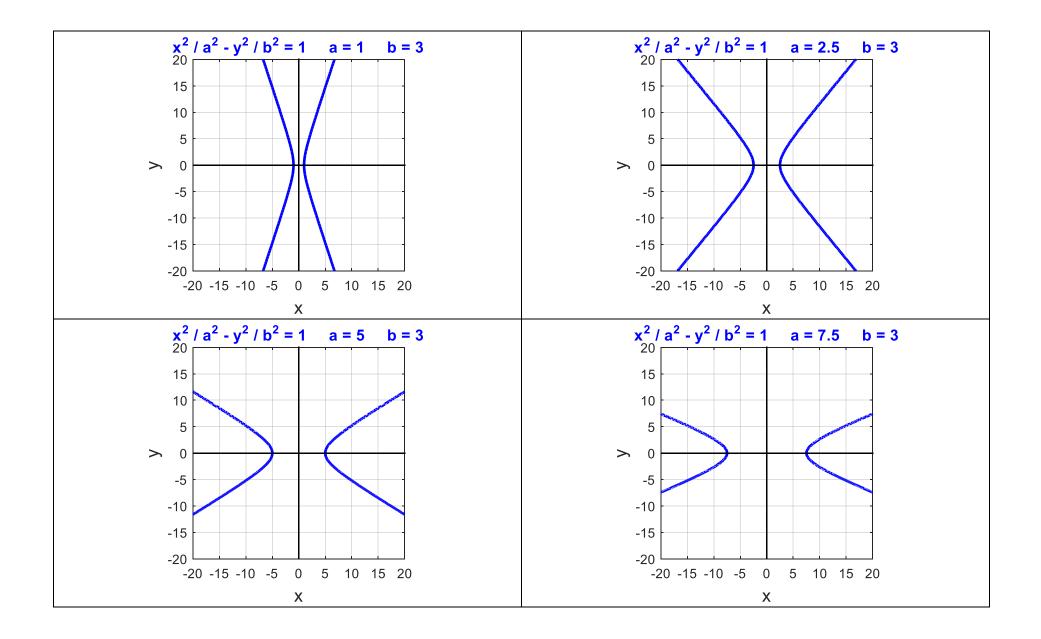
Constants: (x_1, x_2) the coordinates of the ellipse's centre

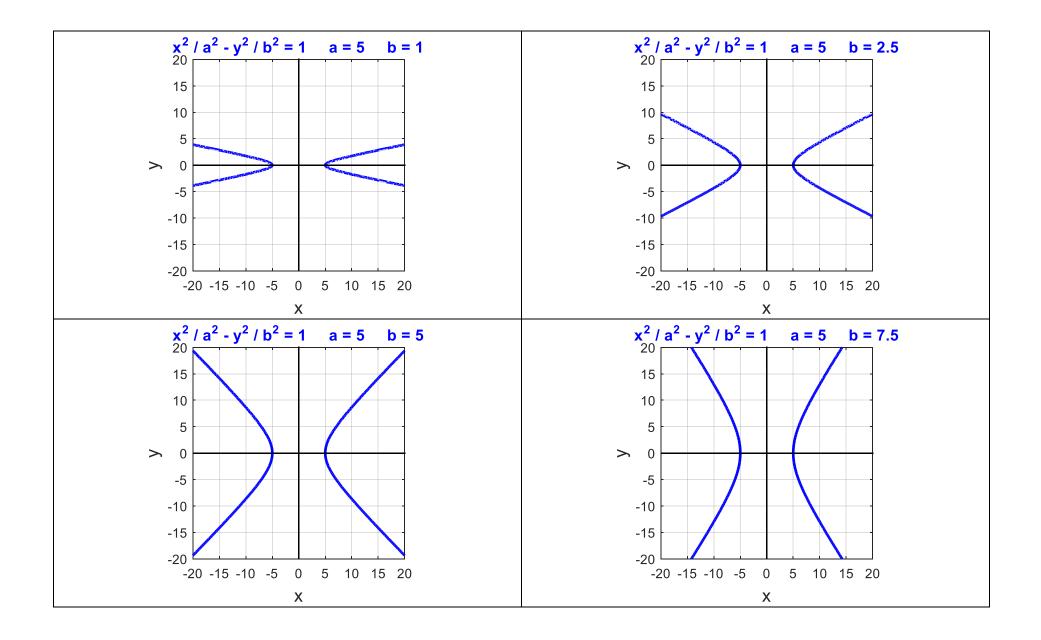
a, *b* hyperbola parameters

The equations for a hyperbola centred on the origin (0, 0) is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

The hyperbola is symmetrical with respect to both the X-axis and Y-axis. The vertices of a hyperbola have the Cartesian coordinates $A_1(-a, 0)$ and $A_2(a, 0)$. Carefully examine the following graphs and take note of the position of the vertices A_1 and A_2 and how the shape of the hyperbola varies for the different values of a, b and b/a.





As seen from the equation and graph of a hyperbola it is a multi-valued function. For each value of *x* there are two *y* values.

The equation for an hyperbola with centre (0, 0) with can also be given in **parametric form**

$$x = a \sec(\theta)$$
$$y = b \tan(\theta)$$

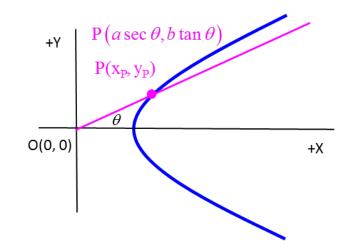
where θ is an angle which ranges from 0 to 2π radians.

$$x = a \sec(\theta) \quad y = b \tan(\theta)$$

$$x^{2} / a^{2} = \sec^{2}(\theta) \quad y^{2} / b^{2} = \tan^{2}(\theta)$$

$$x^{2} / a^{2} - y^{2} / b^{2} = \sec^{2}(\theta) - \tan^{2}(\theta) = 1$$

$$\sec^{2}(\theta) = 1 + \tan^{2}(\theta)$$



The equation for the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

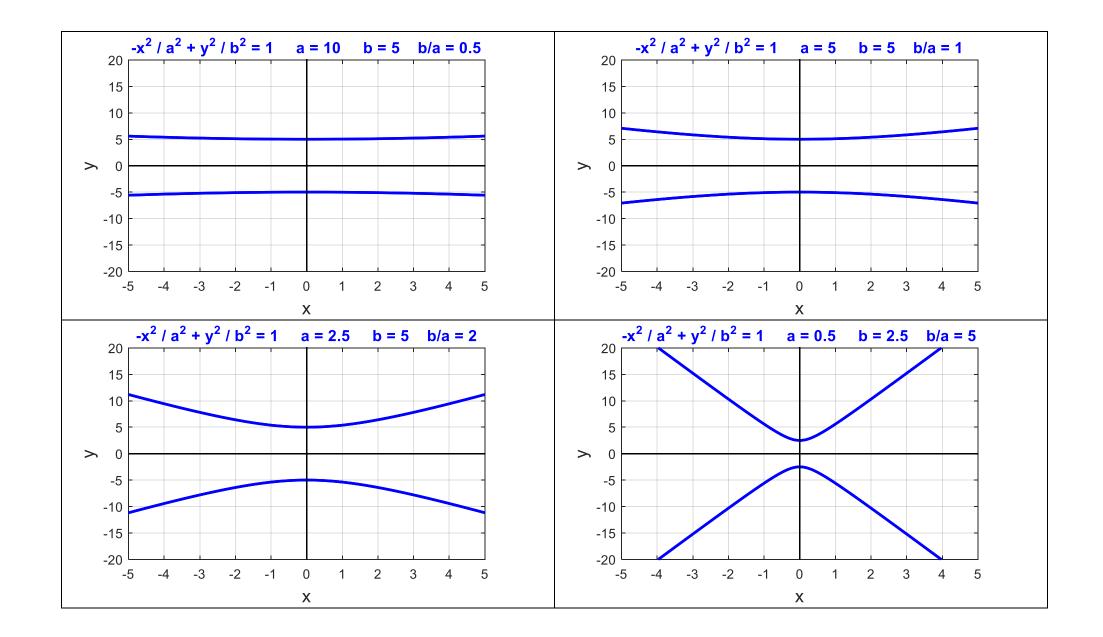
has the vertices A₁(-*a*, 0) and A₂(*a*, 0) since $y = 0 \implies x = \pm a$

The equation for the hyperbola which has the vertices on the Y-axis: B₁(0, -*b*,) and B₂(0, *a*) since $x = 0 \implies y = \pm b$ is

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Carefully examine the graphs below for hyperbolas with different values of b/a.

Note: the X-axis and Y-axis have different scaling.



From viewing the above plots of the hyperbola, it is obvious that a hyperbola is actually two separate curves in mirror image. Some of the important terms associated with the graph of

a hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 are:

The vertices where the hyperbola cuts either the X-axis are A₁(-a, 0) and A₂(a, 0).
 These are the points where the curve makes its sharpest turn.

y must be real
$$\Rightarrow y = \pm b \sqrt{\frac{x^2}{a^2} - 1} \Rightarrow |x| \ge a$$

• The asymptotes show where the curve would go if continued indefinitely in each of

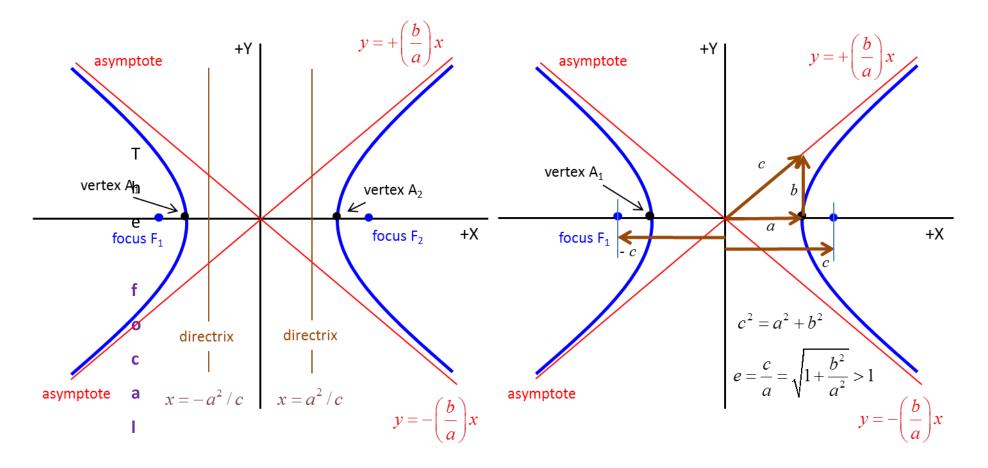
the four directions. For large values of $x \Rightarrow y = \pm b \sqrt{\frac{x^2}{a^2} - 1} \rightarrow \pm \left(\frac{b}{a}\right) x \Rightarrow$

equations for asymptotes are:
$$y = +\left(\frac{b}{a}\right)x$$
 $y = -\left(\frac{b}{a}\right)x$

When
$$x = a$$
 then the $y = +b$ and $y = -b$ on the asymptote $y = +\left(\frac{b}{a}\right)x$

When
$$x = -a$$
 then the $y = +b$ and $y = -b$ on the asymptote $y = -\left(\frac{b}{a}\right)x$

We define the distance *c* as $c^2 = a^2 + b^2$ $c = \sqrt{a^2 + b^2}$



- The two focal points are $F_1(-c, 0)$ and $F_2(c, 0)$.
- The two vertical straight lines $x = -c^2/a$ and $x = +c^2/a$ are each called a **directrix**.
- The X-axis and the Y-axis are both an axis of symmetry.

• Eccentricity *e* shows how "uncurvy" (varying from being a circle) the hyperbola is.

The eccentricity e is given by the formula

$$e = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a} = \sqrt{1 + \frac{b^2}{a^2}} > 1$$

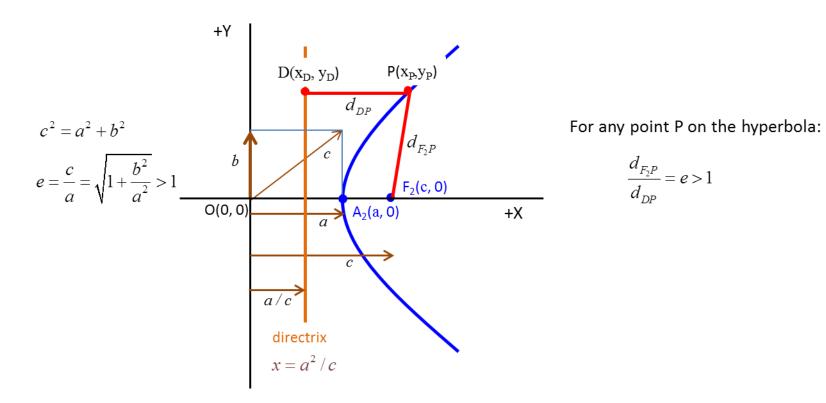
Let

distance from a focus F to a point P on the hyperbola = d_{FP}

distance from the same point P to the point D on the directrix which has the same ordinate as P (the line DP parallel to the X-axis or perpendicular to the Y-axis) = d_{DP}

then a hyperbola can be defined as the set of points P such that the ratio

 $\frac{d_{FP}}{d_{DP}} = e > 1$ where *e* is a constant called the **eccentricity**



When P corresponds to the vertex A₂ then

$$d_{F_{2}P} = c - a \quad d_{DP} = a - a^{2} / c$$

$$\frac{d_{F_{2}P}}{d_{DP}} = \frac{c - a}{a - a^{2} / c} = \frac{c^{2} - c a}{c a - a^{2}} = \frac{c (c - a)}{a (c - a)}$$

$$\frac{d_{F_{2}P}}{d_{DP}} = \frac{c}{a} = e > 1$$

12

Consider the three point: P(x_P , y_P) any point on the hyperbola; the focus F₂(c, 0); and D(a^2/c , y_P)

The distance from the focus F_2 to the point P = d_{F_2P}

The distance from the point D to the point P = d_{DP}

Using the formula for the distance between two points

$$d_{F_2P} = \sqrt{(x_P - c)^2 + {y_P}^2}$$
 $d_{DP} = x_P - a^2 / c$

For a hyperbola

$$\frac{d_{F_2P}}{d_{DP}} = e = \frac{c}{a}$$

Combining these two relationships gives the Cartesian equation for a hyperbola

$$\left(\frac{d_{F_2P}}{d_{DP}}\right)^2 = \frac{c^2}{a^2} = \frac{\left(x_P - c\right)^2 + y_P^2}{\left(x_P - a^2 / c\right)^2}$$

$$a^2 x_P^2 - 2a^2 c x_P + a^2 c^2 + a^2 y_P^2 = c^2 x_P^2 - 2a^2 c x_P + a^4$$

$$\left(a^2 - c^2\right) x_P^2 + a^2 y_P^2 = a^2 \left(a^2 - c^2\right)$$

$$c^2 = a^2 + b^2 \qquad a^2 - c^2 = -b^2$$

$$-b^2 x_P^2 + a^2 y_P^2 = -a^2 b^2$$

$$\frac{x_P^2}{a^2} - \frac{y_P^2}{b^2} = 1$$

Derivation of the Cartesian form for a hyperbola from the locus of points, the difference of whose distances from two the two focal points is constant and equal to 2a.

A hyperbola is a conic section defined as the locus of all points P in the plane the difference of whose distances d_{F_1P} and d_{F_2P} from two fixed points (the foci F_1 and F_2) separated by a distance 2c is a given positive constant k

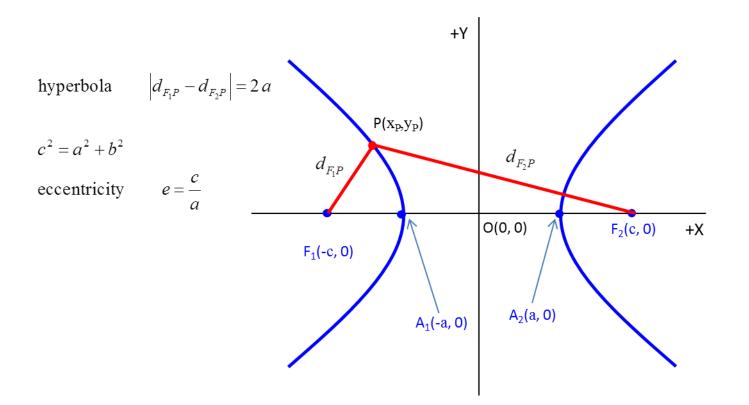
$$\left|d_{F_1P} - d_{F_2P}\right| = k$$

Letting P fall on the left vertex $A_1(-a, 0)$ requires that

$$|d_{F_1P} - d_{F_2P}| = k = |c - a - (c + a)| = 2a$$

Let the point P(x_P , y) be on the hyperbola then using the definition of the hyperbola $\left| d_{F_1P} - d_{F_2P} \right| = 2a$ we can derive the equation of the hyperbola.

$$d_{F_1P} = \sqrt{(x_P + c)^2 + y_P^2} \qquad d_{F_1P}^2 = (x_P + c)^2 + y_P^2$$
$$d_{F_2P} = \sqrt{(x_P - c)^2 + y_P^2} \qquad d_{F_2P}^2 = (x_P - c)^2 + y_P^2$$



$$\sqrt{(x_p + c)^2 + y_p^2} - \sqrt{(x_p - c)^2 + y_p^2} = 2a \sqrt{(x_p + c)^2 + y_p^2} = \sqrt{(x_p - c)^2 + y_p^2} + 2a (x_p + c)^2 + y_p^2 = (x_p - c)^2 + y_p^2 + 4a \sqrt{(x_p - c)^2 + y_p^2} + 4a^2 x_p^2 + 2c x_p + c^2 + y_p^2 - x_p^2 + 2c x_p - c^2 - y_p^2 - 4a^2 = 4a \sqrt{(x_p - c)^2 + y_p^2}$$

$$(c/a) x_{p} - a = \sqrt{(x_{p} - c)^{2} + y_{p}^{2}}$$

$$(c/a)^{2} x_{p}^{2} - 2c x_{p} + a^{2} = (x_{p} - c)^{2} + y_{p}^{2}$$

$$(c/a)^{2} x_{p}^{2} - 2c x_{p} - (x_{p} - c)^{2} - y_{p}^{2} = -a^{2}$$

$$((c/a)^{2} - 1) x_{p}^{2} - c^{2} - y_{p}^{2} = -a^{2}$$

$$\left(\frac{a^{2} - c^{2}}{a^{2}}\right) x_{p}^{2} + y_{p}^{2} = a^{2} - c^{2} \qquad c^{2} = a^{2} + b^{2} \qquad a^{2} - c^{2} = -b^{2}$$

$$(-b^{2}/a^{2}) x_{p}^{2} + y_{p}^{2} = -b^{2}$$

$$\frac{x_{p}^{2}}{a^{2}} - \frac{y_{p}^{2}}{b^{2}} = 1$$

$$\Rightarrow \text{ equation of hyperbola} \qquad \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$$

Equation of tangents to a hyperbola

The equation of a hyperbola with its centre at the origin is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

The equation of the tangent to the hyperbola can be expressed as

$$y = M_1 x + B_1$$

where M_1 is the gradient and B_1 is the intercept of the straight line and the equation of the normal can be expressed as

$$y = M_2 x + B_2$$

where M_2 is the gradient and B_2 is the intercept of the straight line and

 $M_1 M_2 = -1$ since the tangent and normal are perpendicular to each other.

The first derivative dy/dx at a point $P(x_P, y_P)$ on the hyperbola gives the gradient of the tangent to the ellipse at that point. The implicit differentiation of the equation for the hyperbola

$$\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \left(\frac{b}{a}\right)^2 \frac{x}{y}$$

The gradient M_1 of the tangent at the point P (x_P, y_P) is

$$M_1 = \left(\frac{b^2}{a^2}\right) \frac{x_P}{y_P}$$

and the intercept B_1 is

$$B_1 = y_P - M_1 x_P = y_P - \left(\frac{b^2}{a^2}\right) \left(\frac{x_P^2}{y_P}\right)$$

The tangent crosses the X-axis (y = 0) at the point T(x_T , 0) where

$$x_T = \frac{a^2}{x_P}$$

Proof

$$y_{T} = 0 \implies x_{T} = -B_{1} / M_{1} = -\left(\frac{y_{P} - (b^{2} / a^{2})(x_{P}^{2} / y_{P})}{(b^{2} / a^{2})(x_{P} / y_{P})}\right)$$
$$x_{T} = -\frac{a^{2}}{x_{P}}\left(\frac{y_{P}^{2}}{b^{2}} - \frac{x_{P}^{2}}{a^{2}}\right) \qquad \frac{y_{P}^{2}}{b^{2}} - \frac{x_{P}^{2}}{a^{2}} = -1$$
$$x_{T} = \frac{a^{2}}{x_{P}}$$

Equation of a normal to an ellipse

$$y = M_{2}x + B_{2}$$
$$M_{2} = \frac{-1}{M_{1}} = -\left(\frac{a^{2}}{b^{2}}\right)\frac{y_{P}}{x_{P}}$$

Intercept of normal B_2

$$B_2 = y_P + \left(\frac{a^2}{b^2}\right) y_P = y_P \left(\frac{a^2 + b^2}{b^2}\right)$$

The normal crosses the X-axis (y = 0) at the point N($x_N, 0$) where

$$x_N = \left(\frac{a^2 + b^2}{a^2}\right) x_P$$

Proof

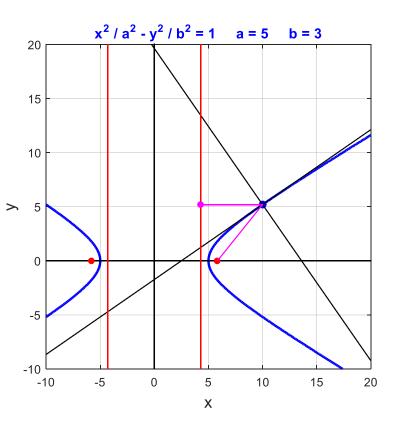
$$y_{N} = 0 \implies x_{N} = -B_{2}/M_{2} = -\left(\frac{y_{P}(a^{2}+b^{2})}{b^{2}}\right)\left(\frac{b^{2}}{-a^{2}}\right)\left(\left(\frac{x_{P}}{y_{P}}\right)\right)$$
$$x_{N} = \frac{(a^{2}+b^{2})}{a^{2}}x_{P}$$

There is no need to remember these formulae for the tangent and normal to the ellipse. It is best to derive the equations from first principles.

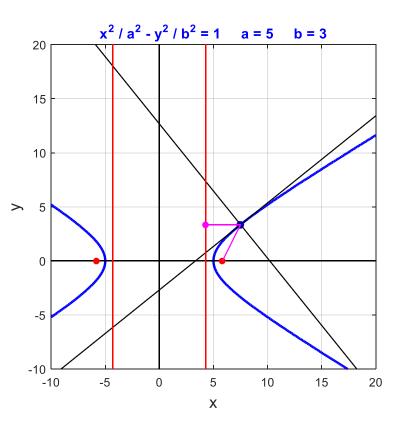
Examples Consider the ellipse $9x^2 - 25y^2 - 225 = 0$

Verify all the numerical values and information in the following two figures for

a = 5	b = 3	c = 5	.83		
P(x, y) = (10, 5.196)					
$A_1(x, y) = (-5, 0)$			$A_{2}(x, y) = (5, 0)$		
F ₁ (x, y) = (-5.83, 0)			$F_2(x, y) = (5.83, 0)$		
D = (4.29, 5.196)					
eccentricity e = 1.17					
directrices 1: $x = -4.29$			directrices 2: $x = 4.29$		
slope tangent M ₁ = 0.693			slope normal M ₂ = -1.44		
intercept tangent B ₁ = -1.73			intercept normal B ₂ = 19.6		
T tangent cross X-axis: $x_T = 2.5$ N normal cross X-axis: $x_N = 13$.					13.6
distances: PF	= ₁ = 16.7	PF ₂ =	6.66	PF ₁ - PF ₂ = 10	
distances: PF	= ₂ = 6.66	PD = 5	5.71	PF ₂ / PD = 1.17	
$x_{p}^{2} / a^{2} - y_{p}^{2} / b^{2} = 1$					

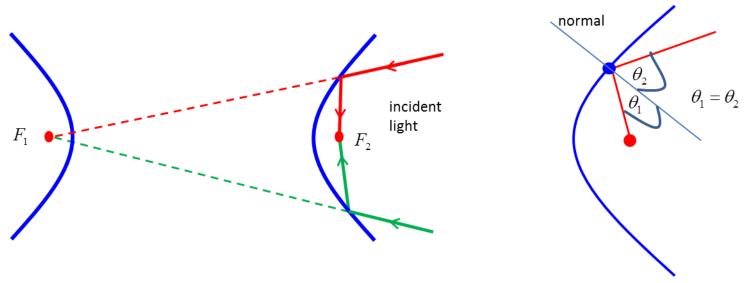


a = 5 b = 3	c = 5.83				
P(x, y) = (7.5, 3.354)					
$A_1(x, y) = (-5, 0)$	$A_2(x, y) = (5, 0)$				
$F_1(x, y) = (-5.83, 0)$	F ₂ (x, y) = (5.83, 0)				
D = (4.29, 3.354)					
eccentricity e = 1.17					
directrices 1: $x = -4.29$	directrices 2: $x = 4.29$				
slope tangent M ₁ = 0.805	slope normal M ₂ = -1.24				
intercept tangent B ₁ = -2.68	intercept normal $B_2 = 12.7$				
T tangent cross X-axis: $x_T = 3.33$ N normal cross X-axis: $x_N =$					
distances: PF ₁ = 13.7	PF ₂ = 3.75 PF ₁ - PF ₂ = 10				
distances: PF ₂ = 3.75	PD = 3.21 PF ₂ / PD = 1.17				
$x_{p}^{2} / a^{2} - y_{p}^{2} / b^{2} = 1$					



Reflective Properties of Hyperbolas

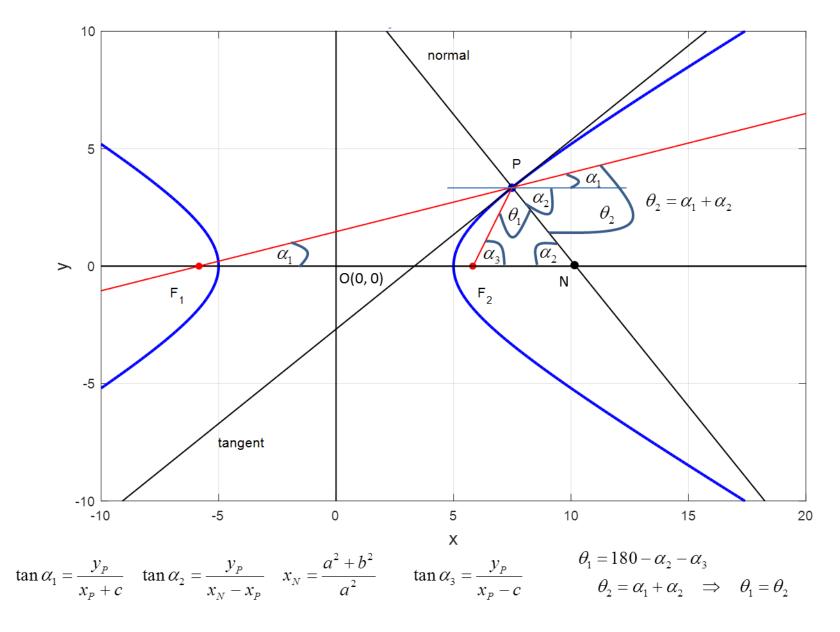
Rays directed toward the focus of hyperbola are reflected at the hyperbolic mirror to the other focus of hyperbola.



The angles θ_1 and θ_2 between the normal line and the straight lines drawn from the hyperbola focus to the given point are equal $\theta_1 = \theta_2$.

This is an example of the Law of Reflection: the angle of incidence is equal to the angle of reflection measured from the normal.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad c^2 = a^2 + b^2 \qquad F_1(-c,0) \quad F_2(c,0) \quad P(x_p, y_p) \quad N\left(\frac{a^2 + b^2}{a^2}, 0\right)$$



Example

For the hyperbola $\frac{x^2}{25} - \frac{y^2}{9} = 1$ and where P is a point on the hyperbola with $x_P = 7.500$ verify the information and calculations shown below.

Calculations

a = 5 b = 3 c = 5.831Point P: $x_P = 7.500$ $y_P = 3.354$ Point N normal cuts X-axis: $x_N = 10.200$ $y_N = 0$ focal points: $x_{F_1} = -5.831$ $y_{F_1} = 0$ $x_{F_2} = 5.831$ $y_{F_2} = 0$

Angles:

$$\alpha_1 = 14.1226^\circ$$
 $\alpha_2 = 51.1665^\circ$ $\alpha_3 = 63.5444^\circ$
 $\theta_1 = 65.289^\circ$ $\theta_2 = 65.2891^\circ = \theta_1$

Compare the calculated values with the above graph.

Note: It is always a good idea to label an angle using a lower case Greek letter.