

ADVANCED HIGH SCHOOL MATHEMATICS

COMPLEX NUMBERS

CURVES AND REGIONS

CURVES or LOCI

A locus (plural: loci) is a set of points whose location satisfies or is determined by one or more specified conditions.

Lines

The complex number z

$$
z=x+i y
$$

corresponds to the point (x, y) in an Argand diagram. In the figure shown, each blue dot represents a complex number with coordinates (x, y).

Now consider only those complex numbers where

$$
z=5+i y \quad \operatorname{Re}(z)=5
$$

This set of complex numbers can only be located on the vertical line $x=5$ on the Argand Diagam.

If the complex numbers are of the form
$z=x+i(-2.5) y \quad \operatorname{Im}(z)=-2.5$ then this set of complex numbers will lie on the horizontal line $y=-2.5$.

Let z_{1} and z_{2} be two points on an Argand diagram.
Consider an equation of the form

$$
\left|z-z_{1}\right|=\left|z-z_{2}\right|
$$

The distance between the points z and z_{1} is $d_{1}=\left|z-z_{1}\right|$ and the distance between the points z and z_{2} is $d_{2}=\left|z-z_{2}\right|$. So for any z value we must have $d_{1}=d_{2}$. Therefore z must correspond to a straight

line passing through the centre of the line joining the two points z_{1} and z_{2} and perpendicular to it.
$\left|z-z_{1}\right|=\left|z-z_{2}\right|$ equation of the perpendicular bisector of the line joining z_{1} and z_{2}.

Circles

$$
z=x+i y
$$

The equation of a circle of radius R with centre $(0,0)$ is

$$
|z|=R \quad|z|=\sqrt{x^{2}+y^{2}}=R \quad x^{2}+y^{2}=R^{2}
$$

The equation of a circle of radius R with centre given by $z_{1}\left(x_{1}, y_{1}\right)$ is

$$
\begin{aligned}
& \left|z-z_{1}\right|=R \\
& \quad|z|=\sqrt{\left(x-x_{1}\right)^{2}+\left(y_{1}\right)^{2}}=R \\
& \quad\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=R^{2}
\end{aligned}
$$

Arguments

$$
\begin{aligned}
& z=x+i y \quad \arg (z)=\theta=a \tan \left(\frac{y}{x}\right) \\
& z_{1}=x_{1}+i y_{1}
\end{aligned}
$$

The equation $\theta=\arg (z)$ corresponds to the line draw from the origin $(0,0)$ to any complex numbers z such that the angle of the line with respect to the real axis is
 θ.

Locus of an arc

The locus of a point z on an Argand diagram that satisfies the relationship

$$
\operatorname{Arg}\left(\frac{z-z_{1}}{z-z_{2}}\right)=\operatorname{Arg}\left(z-z_{1}\right)-\operatorname{Arg}\left(z-z_{1}\right)=\alpha
$$

is the arc of a circle.
Let $\theta_{1}=\operatorname{Arg}\left(z-z_{1}\right) \quad \theta_{2}=\operatorname{Arg}\left(z-z_{2}\right)$ then $\theta=\theta_{1}-\theta_{2}$
$\theta_{1}=\operatorname{Arg}\left(z-z_{1}\right)$ is the locus of a straight line (1) starting at z_{1} and making an angle θ_{1} with the real axis.
$\theta_{2}=\operatorname{Arg}\left(z-z_{2}\right)$ is the locus of a straight line (2) starting at z_{1} and making an angle θ_{2} with the real axis.
$\operatorname{Arg}\left(\frac{z-z_{1}}{z-z_{2}}\right)=\operatorname{Arg}\left(z-z_{1}\right)-\operatorname{Arg}\left(z-z_{1}\right)=\alpha$ is the locus of the point z which is the point of intersection of the two straight lines (1) and (2). As the angle θ_{1} increases and θ_{2} decreases with θ remaining constant the intersection point z moves along the arc of a circle in an anticlockwise direction (starting at z_{1} the arc is in anticlockwise sense to z_{2} $z \neq z_{1} \quad z \neq z_{2}$). The points z_{1} and z_{2} and all the points z lie on the circle. If θ is acute $(\theta$ $\left.<90^{\circ}\right)$ then the points z are on the major arc and if θ is obtuse $\left(\theta>90^{\circ}\right) z$ is on the minor arc.

Plot of z as θ_{1} increases

$$
\begin{aligned}
& \operatorname{Arg}\left(\frac{z-3}{z-2 i}\right) \\
& \quad=\operatorname{Arg}(z-3)-\operatorname{Arg}(z-2 i)=\pi / 4 \\
& z_{1}=3 \quad z_{2}=2 i \quad \theta=\pi / 4 \\
& \theta_{1}=17^{\circ} \text { to } 142^{\circ} \quad \text { steps of } 5^{\circ}
\end{aligned}
$$

z moves anticlockwise around the major arc as θ_{1} increases $\quad z \neq z_{1} \quad z \neq z_{2}$

Plot of z as θ_{1} increases

$$
\begin{aligned}
& \text { Plot of } z \text { as } \theta_{1} \text { increases } \\
& \begin{array}{ll}
\operatorname{Arg}\left(\frac{z+4}{z+3 i}\right) \\
\quad=\operatorname{Arg}(z+4)-\operatorname{Arg}(z-3 i)=\pi / 4 \\
z_{1}=-4 \quad z_{2}=3 i & \theta=\pi / 4 \\
\theta_{1}=86^{\circ} \text { to } 212^{\circ} \quad \text { steps of } 5^{\circ}
\end{array}
\end{aligned}
$$

z moves anticlockwise around the major arc as θ_{1} increases $\quad z \neq z_{1} \quad z \neq z_{2}$

Plot of z as θ_{1} increases

$$
\begin{aligned}
& \operatorname{Arg}\left(\frac{z-5 i}{z-4}\right) \\
& \quad=\operatorname{Arg}(z-5 i)-\operatorname{Arg}(z-4)=3 \pi / 4 \\
& z_{1}=5 i \quad z_{2}=4 \quad \theta=3 \pi / 4 \\
& \theta_{1}=86^{\circ} \text { to } 126^{\circ} \quad \text { steps of } 5^{\circ}
\end{aligned}
$$

z moves anticlockwise around the minor arc as θ_{1} increases $\quad z \neq z_{1} \quad z \neq z_{2}$

From the coordinates of the three points z, z_{1} and z_{2} on the circle you can find the centre of the circle and its radius.

REGIONS

The complex number z

$$
z=x+i y
$$

corresponds to the point (x, y) in an Argand diagram.
The figure shows the location of 400 random complex numbers in the complex plane.

When restrictions are placed upon the values of z, then the plotted values of z that satisfy the restriction will give well defined allowed regions (or lines) in the complex plane.

$$
\operatorname{Re}(z)=x>2 \text { and } \operatorname{Im}(z)=y<5
$$

$$
|z|=\sqrt{x^{2}+y^{2}}<5
$$

The allowed region is all points within the circle of radius 5 and centre $(0,0)$ but it does not include points on the circumference.

$$
|z|=\sqrt{x^{2}+y^{2}} \geq 5
$$

The allowed region is all points outside the circle of radius 5 and centre $(0,0)$ and includes points on the circumference.

$$
|z-3+2 i|=\sqrt{(x-3)^{2}+(y+2)^{2}} \geq 5
$$

Express the magnitude of the complex number from its rectangular form

$$
|z-3+2 i|=\sqrt{(x-3)^{2}+(y+2)^{2}} \geq 5
$$

The allowed region is all points outside the circle of radius 5 and centre ($3,-2$) and includes points on the
 circumference.

$$
\begin{aligned}
& \quad|z-3 i| \leq 10 \quad-\frac{\pi}{4}<\operatorname{Arg}(z-3 i)<+\frac{\pi}{4} \\
& z_{1}=0-3 i \quad|z-3 i| \leq 10 \Rightarrow
\end{aligned}
$$

allowed region for z is all points inside the circle of centre $(0,3)$ and radius 10 .

$$
-\frac{\pi}{4}<\operatorname{Arg}(z-3 i)<+\frac{\pi}{4} \Rightarrow
$$

Starting at the point $(0,3)$, the allowed region for z is the wedge between the angles $-\pi / 4$ and $+\pi / 4$ as measured from a horizontal line (parallel to the real axis) through $(0,3)$.

$$
|z| \leq|z-i|
$$

Express the complex numbers in rectangular form and then rearrange the inequality

$$
x^{2}+y^{2} \leq x^{2}+(y-1)^{2} \Rightarrow y \leq \frac{1}{2}
$$

The allowed region for the values of z is all the
 points on or below the line given by $y=1 / 2$.

What are the allowed values of z that satisfy the conditions

$$
|z-2-3 i|=|z-i|
$$

Let $z=x+y i$

$$
\begin{aligned}
& |x+y i-2-3 i|=|x+y i-i| \\
& |(x-2)+i(y-3)|=|x+i(y-1)| \\
& (x-2)^{2}+(y-3)^{2}=x^{2}+(y-1)^{2} \\
& y=-4 x+12
\end{aligned}
$$

Therefore, the allowed values for z must all line on the straight line $y=-4 x+12$

