ADVANCED HIGH SCHOOL MATHEMATICS

VOLUMES

EXERCISES

Ian Cooper email: matlabvisualphysics@gmail.com
1

The equation of a circle is given by

$$
x^{2}+y^{2}-5 y+4=0
$$

What is the centre of the circle and its radius?

Solution

The given equation of the circle is

$$
x^{2}+y^{2}-5 y+4=0
$$

The general form of the equation of a circle with centre $\left(x_{C}, y_{C}\right)$ and radius a is

$$
\left(x-x_{C}\right)^{2}+\left(y-y_{C}\right)^{2}=a^{2}
$$

We can find $\left(x_{C}, y_{C}\right)$ and a by comparing the two equations

$$
\begin{aligned}
& x_{C}=0 \quad x^{2}+y^{2}-2 y_{C}+y_{C}^{2}-a^{2}=0 \\
& y_{C}=5 / 2 \quad y_{C}{ }^{2}-a^{2}=(5 / 2)^{2}-a^{2}=4 \\
& a=3 / 2
\end{aligned}
$$

The centre of the circle is located at $(0,5 / 2)$ and the radius is $a=3 / 2$.

2

Find the volume of the solid of revolution generated by the rotation of the curve

$$
x^{2}+y^{2}-5 y+4=0
$$

about the X axis.

Solution

The equation of the circle can be written as

$$
x^{2}+(y-5 / 2)^{2}=(3 / 2)^{2}
$$

The circle can be consider to the constructed from two single-valued curves

$$
\begin{aligned}
& y_{1}=5 / 2+\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2} \\
& y_{2}=5 / 2-\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2}
\end{aligned}
$$

Fig. 1. The axis of rotation is the X axis. The circle has centre $(0,5 / 2)$ and radius $a=3 / 2$. The circle can be consider the summation of the two curves y_{1} and y_{2}.

We can use the disk method to find the volume of the solid of revolution by rotating a single valued function $y=f(x)$ about the X axis using the disk method

$$
V=\pi \int_{x_{B}}^{x_{A}} y^{2} d x
$$

Therefore, the volume V of the solid generated by the rotation of the circle about the X axis is

$$
V=\pi \int_{x_{B}}^{x_{A}}\left(y_{1}^{2}-y_{2}^{2}\right) d x
$$

where $x_{A}=3 / 2$ and $x_{B}=-3 / 2$ and from the symmetry of the problem, the integral becomes

$$
V=2 \pi \int_{0}^{3 / 2}\left(y_{1}^{2}-y_{2}^{2}\right) d x
$$

Fig. 2. The volume of the solid of revolution generated is equal to the difference in volumes of the regions formed by the functions y_{1} and y_{2} when they are rotated about the X axis.

outside surface
inside surface

Fig. 3. [3D] plots of the outside and inside surfaces of the solid of revolution.

$$
\begin{aligned}
& V=2 \pi \int_{0}^{3 / 2}\left(y_{1}{ }^{2}-y_{2}{ }^{2}\right) d x \\
& y_{1}{ }^{2}-y_{2}{ }^{2}=(5 / 2)^{2}+5\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2}+\left[(3 / 2)^{2}-x^{2}\right] \\
& \quad-(5 / 2)^{2}+5\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2}-\left[(3 / 2)^{2}-x^{2}\right]
\end{aligned}
$$

$y_{1}{ }^{2}-y_{2}{ }^{2}=10\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2}$

$$
V=20 \pi \int_{x_{B}}^{x_{A}}\left[(3 / 2)^{2}-x^{2}\right]^{1 / 2} d x
$$

Make the substitution
$x=(3 / 2) \sin \theta \quad d x=(3 / 2) \cos \theta d \theta \quad x_{A}=3 / 2 \rightarrow \theta_{A}=\pi / 2 \quad x_{B}=0 \rightarrow \theta_{B}=0$

$$
\begin{aligned}
V= & 20 \pi \int_{0}^{\pi / 2}(9 / 4)\left(1-\sin ^{2} \theta\right)^{1 / 2} \cos \theta d x \\
V= & 45 \pi \int_{0}^{\pi / 2} \cos ^{2} \theta d x \\
& \quad \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1 \\
& \cos ^{2} \theta=\frac{1}{2}(1+\cos (2 \theta)) \\
V= & \frac{45 \pi}{2} \int_{0}^{\pi / 2}(1+\cos (2 \theta)) d x \\
V= & \left(\frac{45 \pi}{2}\right)\left[\theta+\frac{1}{2} \sin (2 \theta)\right]_{0}^{\pi / 2} \\
V= & \frac{45 \pi^{2}}{4}
\end{aligned}
$$

The figures were created using the scientific programming software package MATLAB. The mscript for the figures is math_vol_07.m which can be downloaded from

