ADVANCED HIGH SCHOOL MATHEMATICS

GRAPHS

EXERCISES

Ian Cooper email: matlabvisualphysics@gmail.com

1

Consider the polynomial

$$
y=3 x^{4}-8 x^{3}-30 x^{2}+72 x+27
$$

Find the stationary points and indicate whether they are a maximum, minimum or a point of inflection.

Evaluate the polynomial at $x=0$ and at each stationary point.
Sketch the polynomial and find where the curve cuts the X-axis.

Solution

Stationary points occur when $d y / d x=0$

$$
\begin{aligned}
& y=3 x^{4}-8 x^{3}-30 x^{2}+72 x+27 \\
& d y / d x=12 x^{3}-24 x^{2}-60 x+72=0 \\
& x^{3}-2 x^{2}-5 x+6=0
\end{aligned}
$$

The roots of the cubic equation can be found from the relationships between the coefficients and the roots $\alpha+\beta+\gamma=-b / a \quad \alpha \beta \gamma=-d / a$

$$
\begin{aligned}
& x^{3}-2 x^{2}-5 x+6=(x+2)(x-1)(x-3)=0 \\
& d y / d x=0 \quad \Rightarrow \quad x=-2 \quad x=1 \quad x=3
\end{aligned}
$$

The type of stationary point is given by $d^{2} y / d x^{2}$
$d^{2} y / d x^{2}=0 \Rightarrow$ inflection point $\quad d^{2} y / d x^{2}<0 \Rightarrow \max \quad d^{2} y / d x^{2}>0 \quad \Rightarrow \quad \min$

$$
\begin{aligned}
& d^{2} y / d x^{2}=3 x^{2}-4 x-5 \\
& x=-2 \quad d^{2} y / d x^{2}=15>0 \Rightarrow \min \\
& x=1 \quad d^{2} y / d x^{2}=-6>0 \Rightarrow \max \\
& x=3 \quad d^{2} y / d x^{2}=10>0 \Rightarrow \min
\end{aligned}
$$

$$
x=0 \Rightarrow y=27 \quad x=-2 \Rightarrow y=-125 \quad x=1 \Rightarrow y=64 \quad x=3 \Rightarrow y=0
$$

The polynomial cuts the X -axis $(y=0)$ at $x=-3, \mathrm{x} \approx-0.33$ and $x=3$

2

Sketch the curve

$$
y^{2}=x^{2}\left(1-x^{2}\right)
$$

Showing its maximum width.
Find the total area and volume of the curve enclosed by the loops.

Solution

$y^{2}=x^{2}\left(1-x^{2}\right)$
When $y=0 \quad x=0, x=-1$ and $x=1$
$y=x \sqrt{1-x^{2}} \quad y$ is a real number $\quad \Rightarrow-1 \leq x \leq 1$
The stationary (turning) points occur when $d y / d x=0$
$y= \pm x\left(1-x^{2}\right)^{1 / 2}$
$d y / d x=\left(1-x^{2}\right)^{1 / 2}-x^{2}\left(1-x^{2}\right)^{-1 / 2}=0$
$x^{2}=1 / 2 \quad x= \pm \frac{1}{\sqrt{2}} \Rightarrow y= \pm \frac{1}{2}$

The maximum width of each loop of the curve is 1.

The total area A enclosed by the two loops is
$A=4 \int_{0}^{1} x\left(1-x^{2}\right)^{1 / 2} d x$
$x=\sin \theta \quad d x / d \theta=\cos \theta \quad d x=\cos \theta d \theta \quad(x=0 y=0) \quad(x=1 y=\pi / 2)$
$A=4 \int_{0}^{\pi / 2} \sin \theta \cos ^{2} \theta d \theta$
$A=\frac{-4}{3}\left[\cos ^{3} \theta\right]_{0}^{\pi / 2}=\left(\frac{-4}{3}\right)(0-1)$
$A=\frac{4}{3}$

The volume V can be found by considering the rotation of the curve about the X -axis. The volume element generated can be divided into a series of cylinders of cross-sectional area πy^{2} and width $d x$. The volume is found by adding the volumes of each element and as $d x \rightarrow 0$ the summation becomes the integral $V=2 \int_{0}^{1} \pi y^{2} d x=2 \pi \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{2} d x$ the factor 2 is because we have two loops

$$
\begin{aligned}
& x=\sin \theta \quad d x / d \theta=\cos \theta \quad d x=\cos \theta d \theta \quad(x=0 \quad y=0) \quad(x=1 y=\pi / 2) \\
& V=2 \pi \int_{0}^{\pi / 2}\left(\cos \theta \sin ^{2} \theta-\cos \theta \sin ^{4} \theta\right) d \theta \\
& V=2 \pi\left[\frac{1}{3} \sin ^{3} \theta-\frac{1}{5} \sin ^{5} \theta\right]_{0}^{\pi / 2}=2 \pi\left(\frac{1}{3}-\frac{1}{5}\right) \\
& V=\frac{4 \pi}{15}
\end{aligned}
$$

