ADVANCED HIGH SCHOOL MATHEMATICS

CONICS

EXERCISES

Ian Cooper email: matlabvisualphysics@gmail.com

1

Consider the equation

$$
4 x^{2}-25 y^{2}=100
$$

1A

What type of curve does the equation correspond too? Is the eccentricity e of the curve: $e=1 ; \mathrm{e}<1, e>1 ; e=0$?

1B

Give the Cartesian coordinates for the vertices and focal points. Calculate the eccentricity e of the curve?

1C

State the equations for the directrices and asymptotes of the curve.

1D

The point P on the curve has the X -coordinate $x_{P}=10$ and $y_{P}>0$. Where does the tangent to the curve at the point P cut the X -axis and Y -axis? Where does the normal to the tangent at the point P intersect the X-axis and the Y-axis

Sketch the curve showing the vertices, focal points, the asymptotes, directrices, and the points where the tangent and the normal intersect the X-axis and Y axis. For your sketch: X-axis (-30 to +30) and Y-axis $(-30$ to +30$)$.

Solution

1A

The equation $4 x^{2}-25 y^{2}=100$ corresponds to the curve of a hyperbola.
The eccentricity of hyperbolas is $e>1$.
1B
A general expression for a hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
The equation of the hyperbola $4 x^{2}-25 y^{2}=100 \quad$ can be re-written as

$$
\frac{x^{2}}{5^{2}}-\frac{y^{2}}{2^{2}}=1 \Rightarrow a=5 \quad b=2
$$

The vertices of the hyperbola are $\mathrm{A}_{1}(-a, 0)$ and $\mathrm{A}_{2}(a, 0)$

$$
\mathrm{A}_{1}(-5,0) \text { and } \mathrm{A}_{2}(5,0)
$$

The focal length c is $c^{2}=a^{2}+b^{2} \quad c=\sqrt{a^{2}+b^{2}}=\sqrt{25+4}=\sqrt{29}=5.3852$

The focal points are $F_{1}(-c, 0)$ and $F_{2}(c, 0)$

$$
F_{1}(-\sqrt{29}, 0) \text { and } F_{2}(\sqrt{29}, 0) \text { or } F_{1}(-5.3852,0) \text { and } F_{2}(5.3852,0)
$$

The eccentricity is $e=\frac{c}{a}=\frac{\sqrt{29}}{5}=1.0770>1$

1C

The equations for the directrices are

$$
x= \pm \frac{a^{2}}{c} \Rightarrow x=\frac{-25}{\sqrt{29}}=-4.6424 \quad x=\frac{+25}{\sqrt{29}}=4.6424
$$

The equations for the asymptotes are

$$
y= \pm \frac{b}{a} x \Rightarrow y=-\frac{2}{5} x=-0.4000 x \quad y=\frac{2}{5} x=0.4000 x
$$

1D

The coordinates of the point P are $\left(x_{P}, y_{P}\right)$

$$
x_{P}=10 \quad y_{P}=\sqrt{4\left(\frac{100}{25}\right)-1}=\sqrt{12}=2 \sqrt{3}
$$

The equation of the straight line for the tangent is $\quad y=M_{1} x+B_{1}$
The gradient of the curve is given by the first derivative of the function

$$
\left(\frac{2}{25}\right) x-\left(\frac{2}{4}\right) y\left(\frac{d y}{d x}\right)=0 \quad d y / d x=\left(\frac{4}{25}\right)\left(\frac{x}{y}\right)
$$

The gradient M_{1} at the point P

$$
x_{P}=10 \quad y_{P}=2 \sqrt{3} \quad M_{1}=\left(\frac{4}{25}\right)\left(\frac{10}{2 \sqrt{3}}\right)=\left(\frac{4}{5 \sqrt{3}}\right)=0.4619
$$

The intercept B_{1} of the tangent is

$$
B_{1}=y_{P}-M_{1} x_{P}=2 \sqrt{3}-10\left(\frac{4}{5 \sqrt{3}}\right)=\frac{-2}{\sqrt{3}}=1.1547
$$

The tangent intersects the X -axis at the point T

$$
y_{T}=0 \quad x_{T}=-\frac{B_{1}}{M_{1}}=-\left(\frac{-2}{\sqrt{3}}\right)\left(\frac{5 \sqrt{3}}{4}\right)=2.5
$$

The tangent intersects the Y -axis at the Point U

$$
x_{U}=0 \quad y_{U}=B_{1}=\frac{-2}{\sqrt{3}}=-1.1547
$$

The equation of the straight line for the normal is $\quad y=M_{2} x+B_{2}$
where $\quad M_{2}=\frac{-1}{M_{1}}=-\left(\frac{5 \sqrt{3}}{4}\right)=2.1651$
The intercept B_{2} of the normal is

$$
B_{2}=y_{P}-M_{2} x_{P}=2 \sqrt{3}+10\left(\frac{5 \sqrt{3}}{4}\right)=14.5 \sqrt{3}=25.1147
$$

The normal intersects the X -axis at the point R

$$
y_{R}=0 \quad x_{R}=-\frac{B_{2}}{M_{2}}=-(14.5 \sqrt{3})\left(\frac{-4}{5 \sqrt{3}}\right)=+11.600
$$

The normal intersects the Y -axis at the Point S

$$
x_{S}=0 \quad y_{S}=B_{2}=14.5 \sqrt{3}=25.1147
$$

In the graphs, the vertices and focal points blue dots) are very close to each other

2

Consider the equation $\quad x y=k^{2} \quad k$ is a constant
The origin of the Cartesian coordinate system is $\mathrm{O}(0,0)$. The two points $\mathrm{P}\left(x_{P}, y_{P}\right)$ and $Q\left(x_{Q}, y_{Q}\right)$ lie on the curve and $x_{P}=k p$ and $x_{Q}=k q$.

2A

What type of curve does the equation correspond too?
How are the distances of a vertex a and focal point c from the origin related to the constant k ? Show that the eccentricity e is $e=\sqrt{2}$.

2B
State the Cartesian coordinates for the vertices and focal points of the curve in terms of k.
$2 C$
State the equations for the asymptotes, axes of symmetry, and the directrices of the curve.

2D
The tangent to the curve at the point P cuts the X -axis and Y -axis at the points T and U respectively.

Show that the equation of the tangent at the point P is $x+p^{2} y=2 k p$.
Show that the points O, T, and U are on a circle with centre P .
2 E
The tangent to the curve at the point Q cuts the X -axis and Y -axis at the points R and S respectively. Show that UR is parallel to $P Q$.

Solution

1A

Sketch diagrams of the curve and label key features before answering the questions

The equation for the curve of a rectangular hyperbola with the openings in the first and third quadrants is

$$
x y=\frac{a^{2}}{2} \quad \text { where } a \text { is the distance from a vertex to the }
$$

origin.
Therefore the equation $x y=k^{2}$ is a rectangular hyperbola opening in the first and third quadrants where

$$
k=\frac{a}{\sqrt{2}} \quad a=\sqrt{2} k
$$

The focal length c for the rectangular hyperbola is

$$
a=b \quad c^{2}=a^{2}+b^{2}=2 a^{2} \quad c=\sqrt{2} a \quad a=\sqrt{2} k \quad c=2 k
$$

The eccentricity of hyperbolas is given by

$$
e=\frac{c}{a}=\frac{2 k}{\sqrt{2} k}=\sqrt{2}
$$

2B

The distances from the origin to the vertices A_{1} and A_{2} is a, therefore vertices of the hyperbola are $\mathrm{A}_{1}(-a / \sqrt{2},-a / \sqrt{2})$ and $\mathrm{A}_{2}(a / \sqrt{2}, a / \sqrt{2})$

$$
\begin{aligned}
& a=\sqrt{2} k \quad k=a / \sqrt{2} \\
& \mathrm{~A}_{1}(-k,-k) \text { and } \mathrm{A}_{2}(k, k)
\end{aligned}
$$

Alternatively, the vertices are given by the intersection of the hyperbola $x y=k^{2}$ and the straight line $\mathrm{x}=\mathrm{y}$.

$$
x=y \quad x y=k^{2} \quad \Rightarrow \quad x= \pm k \quad y= \pm k
$$

For a rectangular hyperbola $a=b$ and the focal length c is

$$
c^{2}=a^{2}+b^{2}=2 a^{2} \quad c=\sqrt{2} a
$$

The focal length is c where $c=\sqrt{2} a=2 k$, therefore, the coordinates of the focal points are

$$
\begin{aligned}
& \mathrm{F}_{1}(-c / \sqrt{2},-c / \sqrt{2}) \text { or } \mathrm{F}_{1}(-\sqrt{2} k,-\sqrt{2} k) \\
& \mathrm{F}_{2}(c / \sqrt{2}, c / \sqrt{2}) \text { or } \mathrm{F}_{2}(\sqrt{2} k, \sqrt{2} k)
\end{aligned}
$$

The equations for the asymptotes are

$$
\begin{array}{ll}
\text { First quadrant } & +X \text { axis and }+Y \text { axis } \\
\text { Third quadrant } & -X \text { axis and }-Y \text { axis } \\
\text { X-axis } y=0 & Y \text {-axis } x=0
\end{array}
$$

The rectangular hyperbola has symmetrical openings in the first and third quadrants. Therefore, there are two axes of symmetry

$$
\text { The lines } \quad y=x \quad \text { and } \quad y=-x
$$

The directrices must be lines that are parallel to the axis of symmetry $y=-x$ and the distance d from this line to the axis of symmetry is

$$
d=\frac{a^{2}}{c} \quad a=\sqrt{2} k \quad c=2 k \quad d=k
$$

Let the equations for the directrices be of the form $y=-x \pm B$ with one directrix passing through the point $\mathrm{D}_{1}(-k / \sqrt{2},-k / \sqrt{2})$ and the other through $\mathrm{D}_{2}(k / \sqrt{2}, k / \sqrt{2})$, therefore , $B=\sqrt{2} k$. Hence, the equations for the two directrices are

$$
y=-x+\sqrt{2} k \quad \text { and } \quad y=-x-\sqrt{2} k .
$$

The coordinates of the point P are $\left(x_{P}, y_{P}\right)$

$$
x_{P}=k p \quad y_{P}=\frac{k^{2}}{k p}=\frac{k}{p}
$$

The equation of the straight line for the tangent is $\quad y=M_{1} x+B_{1}$
The gradient of the curve is given by the first derivative of the function $x y=k^{2}$

$$
y+x\left(\frac{d y}{d x}\right)=0 \quad d y / d x=-\left(\frac{y}{x}\right)=-\left(\frac{k^{2}}{x^{2}}\right)
$$

The gradient M_{1} at the point P

$$
x_{P}=k p \quad y_{P}=\frac{k}{p} \quad M_{1}=-\left(\frac{y_{P}}{x_{P}}\right)=-\frac{1}{p^{2}}
$$

The intercept B_{1} of the tangent is

$$
B_{1}=y_{P}-M_{1} x_{P}=\frac{k}{p}+\left(\frac{1}{p^{2}}\right)(k p)=\frac{2 k}{p}
$$

Hence, the equation of the tangent is

$$
x+p^{2} y=2 k p
$$

The tangent intersects the X -axis at the point T

$$
y_{T}=0 \quad x_{T}=2 k p
$$

The tangent intersects the Y -axis at the Point U

$$
x_{U}=0 \quad y_{U}=\frac{2 k}{p}
$$

If the points O, T and U lie on a circle with centre P then the distance $O P, T P$ and UP must be equal

$$
\begin{aligned}
& d_{O P}^{2}=x_{P}^{2}+y_{P}^{2}=k^{2} p^{2}+\frac{k^{2}}{p^{2}} \\
& d_{T P}^{2}=\left(x_{P}-x_{T}\right)^{2}+y_{P}^{2}=(k p-2 k p)^{2}+\frac{k^{2}}{p^{2}}=k^{2} p^{2}+\frac{k^{2}}{p^{2}} \\
& d_{U P}^{2}=x_{P}^{2}+\left(y_{P}-y_{U}\right)^{2}=k^{2} p^{2}+\left(\frac{k}{p}-\frac{2 k}{p}\right)^{2}=k^{2} p^{2}+\frac{k^{2}}{p^{2}}
\end{aligned}
$$

Therefore, all the points O, T and U lie on a circle with centre P

2E

From part (D), the equation of tangent and coordinates of the points R and S are

$$
x+q^{2} y=2 k q
$$

The tangent intersects the X -axis at the point R

$$
y_{R}=0 \quad x_{R}=2 k q
$$

The tangent intersects the Y -axis at the Point S

$$
x_{S}=0 \quad y_{S}=\frac{2 k}{q}
$$

The slope of the line $P Q$ is

$$
m_{P Q}=\frac{k / p-k / q}{k p-k q}=\frac{-1}{p q}
$$

The slope of the line UR is

$$
m_{U R}=\frac{2 k / p-0}{0-2 k q}=\frac{-1}{p q}
$$

The slopes are equal, hence the two lines are parallel.

